Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Mach Intell ; 5(4): 351-362, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37693852

RESUMEN

Technological advances now make it possible to study a patient from multiple angles with high-dimensional, high-throughput multi-scale biomedical data. In oncology, massive amounts of data are being generated ranging from molecular, histopathology, radiology to clinical records. The introduction of deep learning has significantly advanced the analysis of biomedical data. However, most approaches focus on single data modalities leading to slow progress in methods to integrate complementary data types. Development of effective multimodal fusion approaches is becoming increasingly important as a single modality might not be consistent and sufficient to capture the heterogeneity of complex diseases to tailor medical care and improve personalised medicine. Many initiatives now focus on integrating these disparate modalities to unravel the biological processes involved in multifactorial diseases such as cancer. However, many obstacles remain, including lack of usable data as well as methods for clinical validation and interpretation. Here, we cover these current challenges and reflect on opportunities through deep learning to tackle data sparsity and scarcity, multimodal interpretability, and standardisation of datasets.

3.
J Comp Neurol ; 530(6): 886-902, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34608995

RESUMEN

In the highly dynamic metabolic landscape of a neuron, mitochondrial membrane architectures can provide critical insight into the unique energy balance of the cell. Current theoretical calculations of functional outputs like adenosine triphosphate and heat often represent mitochondria as idealized geometries, and therefore, can miscalculate the metabolic fluxes. To analyze mitochondrial morphology in neurons of mouse cerebellum neuropil, 3D tracings of complete synaptic and axonal mitochondria were constructed using a database of serial transmission electron microscopy (TEM) tomography images and converted to watertight meshes with minimal distortion of the original microscopy volumes with a granularity of 1.64 nanometer isotropic voxels. The resulting in-silico representations were subsequently quantified by differential geometry methods in terms of the mean and Gaussian curvatures, surface areas, volumes, and membrane motifs, all of which can alter the metabolic output of the organelle. Finally, we identify structural motifs present across this population of mitochondria, which may contribute to future modeling studies of mitochondrial physiology and metabolism in neurons.


Asunto(s)
Cerebelo , Mitocondrias , Neuronas , Neurópilo , Animales , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...