Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
JMIR Form Res ; 7: e44331, 2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37384382

RESUMEN

BACKGROUND: To provide quality care, modern health care systems must match and link data about the same patient from multiple sources, a function often served by master patient index (MPI) software. Record linkage in the MPI is typically performed manually by health care providers, guided by automated matching algorithms. These matching algorithms must be configured in advance, such as by setting the weights of patient attributes, usually by someone with knowledge of both the matching algorithm and the patient population being served. OBJECTIVE: We aimed to develop and evaluate a machine learning-based software tool, which automatically configures a patient matching algorithm by learning from pairs of patient records previously linked by humans already present in the database. METHODS: We built a free and open-source software tool to optimize record linkage algorithm parameters based on historical record linkages. The tool uses Bayesian optimization to identify the set of configuration parameters that lead to optimal matching performance in a given patient population, by learning from prior record linkages by humans. The tool is written assuming only the existence of a minimal HTTP application programming interface (API), and so is agnostic to the choice of MPI software, record linkage algorithm, and patient population. As a proof of concept, we integrated our tool with SantéMPI, an open-source MPI. We validated the tool using several synthetic patient populations in SantéMPI by comparing the performance of the optimized configuration in held-out data to SantéMPI's default matching configuration using sensitivity and specificity. RESULTS: The machine learning-optimized configurations correctly detect over 90% of true record linkages as definite matches in all data sets, with 100% specificity and positive predictive value in all data sets, whereas the baseline detects none. In the largest data set examined, the baseline matching configuration detects possible record linkages with a sensitivity of 90.2% (95% CI 88.4%-92.0%) and specificity of 100%. By comparison, the machine learning-optimized matching configuration attains a sensitivity of 100%, with a decreased specificity of 95.9% (95% CI 95.9%-96.0%). We report significant gains in sensitivity in all data sets examined, at the cost of only marginally decreased specificity. The configuration optimization tool, data, and data set generator have been made freely available. CONCLUSIONS: Our machine learning software tool can be used to significantly improve the performance of existing record linkage algorithms, without knowledge of the algorithm being used or specific details of the patient population being served.

2.
JMIR Mhealth Uhealth ; 10(3): e35799, 2022 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-35293871

RESUMEN

BACKGROUND: Mobile health (mHealth) interventions are increasingly being designed to facilitate health-related behavior change. Integrating insights from behavioral science and design science can help support the development of more effective mHealth interventions. Behavioral Design (BD) and Design Thinking (DT) have emerged as best practice approaches in their respective fields. Until now, little work has been done to examine how BD and DT can be integrated throughout the mHealth design process. OBJECTIVE: The aim of this scoping review was to map the evidence on how insights from BD and DT can be integrated to guide the design of mHealth interventions. The following questions were addressed: (1) what are the main characteristics of studies that integrate BD and DT during the mHealth design process? (2) what theories, models, and frameworks do design teams use during the mHealth design process? (3) what methods do design teams use to integrate BD and DT during the mHealth design process? and (4) what are key design challenges, implementation considerations, and future directions for integrating BD and DT during mHealth design? METHODS: This review followed the Joanna Briggs Institute reviewer manual and PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses Extension for Scoping Reviews) checklist. Studies were identified from MEDLINE, PsycINFO, Embase, CINAHL, and JMIR by using search terms related to mHealth, BD, and DT. Included studies had to clearly describe their mHealth design process and how behavior change theories, models, frameworks, or techniques were incorporated. Two independent reviewers screened the studies for inclusion and completed the data extraction. A descriptive analysis was conducted. RESULTS: A total of 75 papers met the inclusion criteria. All studies were published between 2012 and 2021. Studies integrated BD and DT in notable ways, which can be referred to as "Behavioral Design Thinking." Five steps were followed in Behavioral Design Thinking: (1) empathize with users and their behavior change needs, (2) define user and behavior change requirements, (3) ideate user-centered features and behavior change content, (4) prototype a user-centered solution that supports behavior change, and (5) test the solution against users' needs and for its behavior change potential. The key challenges experienced during mHealth design included meaningfully engaging patient and public partners in the design process, translating evidence-based behavior change techniques into actual mHealth features, and planning for how to integrate the mHealth intervention into existing clinical systems. CONCLUSIONS: Best practices from BD and DT can be integrated throughout the mHealth design process to ensure that mHealth interventions are purposefully developed to effectively engage users. Although this scoping review clarified how insights from BD and DT can be integrated during mHealth design, future research is needed to identify the most effective design approaches.


Asunto(s)
Ciencias de la Conducta , Telemedicina , Terapia Conductista , Conductas Relacionadas con la Salud , Humanos , Telemedicina/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...