Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Mol Neurosci ; 16: 1179209, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37456526

RESUMEN

Classic experiments with peripheral sympathetic neurons established an absolute dependence upon NGF for survival. A forgotten problem is how these neurons become resistant to deprivation of trophic factors. The question is whether and how neurons can survive in the absence of trophic support. However, the mechanism is not understood how neurons switch their phenotype to lose their dependence on trophic factors, such as NGF and BDNF. Here, we approach the problem by considering the requirements for trophic support of peripheral sympathetic neurons and hippocampal neurons from the central nervous system. We developed cellular assays to assess trophic factor dependency for sympathetic and hippocampal neurons and identified factors that rescue neurons in the absence of trophic support. They include enhanced expression of a subunit of the NGF receptor (Neurotrophin Receptor Homolog, NRH) in sympathetic neurons and an increase of the expression of the glucocorticoid receptor in hippocampal neurons. The results are significant since levels and activity of trophic factors are responsible for many neuropsychiatric conditions. Resistance of neurons to trophic factor deprivation may be relevant to the underlying basis of longevity, as well as an important element in preventing neurodegeneration.

2.
Elife ; 122023 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-37358072

RESUMEN

Ketamine is shown to enhance excitatory synaptic drive in multiple brain areas, which is presumed to underlie its rapid antidepressant effects. Moreover, ketamine's therapeutic actions are likely mediated by enhancing neuronal Ca2+ signaling. However, ketamine is a noncompetitive NMDA receptor (NMDAR) antagonist that reduces excitatory synaptic transmission and postsynaptic Ca2+ signaling. Thus, it is a puzzling question how ketamine enhances glutamatergic and Ca2+ activity in neurons to induce rapid antidepressant effects while blocking NMDARs in the hippocampus. Here, we find that ketamine treatment in cultured mouse hippocampal neurons significantly reduces Ca2+ and calcineurin activity to elevate AMPA receptor (AMPAR) subunit GluA1 phosphorylation. This phosphorylation ultimately leads to the expression of Ca2+-Permeable, GluA2-lacking, and GluA1-containing AMPARs (CP-AMPARs). The ketamine-induced expression of CP-AMPARs enhances glutamatergic activity and glutamate receptor plasticity in cultured hippocampal neurons. Moreover, when a sub-anesthetic dose of ketamine is given to mice, it increases synaptic GluA1 levels, but not GluA2, and GluA1 phosphorylation in the hippocampus within 1 hr after treatment. These changes are likely mediated by ketamine-induced reduction of calcineurin activity in the hippocampus. Using the open field and tail suspension tests, we demonstrate that a low dose of ketamine rapidly reduces anxiety-like and depression-like behaviors in both male and female mice. However, when in vivo treatment of a CP-AMPAR antagonist abolishes the ketamine's effects on animals' behaviors. We thus discover that ketamine at the low dose promotes the expression of CP-AMPARs via reduction of calcineurin activity, which in turn enhances synaptic strength to induce rapid antidepressant actions.


Asunto(s)
Ketamina , Receptores AMPA , Ratones , Masculino , Femenino , Animales , Receptores AMPA/metabolismo , Ketamina/farmacología , Calcineurina/metabolismo , Transmisión Sináptica , Antidepresivos/farmacología , Receptores de N-Metil-D-Aspartato/metabolismo
3.
Res Sq ; 2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-37034806

RESUMEN

Oxytocin is a neuropeptide critical for maternal physiology and social behavior, and is thought to be dysregulated in several neuropsychiatric disorders. Despite the biological and neurocognitive importance of oxytocin signaling, methods are lacking to activate oxytocin receptors with high spatiotemporal precision in the brain and peripheral mammalian tissues. Here we developed and validated caged analogs of oxytocin which are functionally inert until cage release is triggered by ultraviolet light. We examined how focal versus global oxytocin application affected oxytocin-driven Ca2+ wave propagation in mouse mammary tissue. We also validated the application of caged oxytocin in the hippocampus and auditory cortex with electrophysiological recordings in vitro, and demonstrated that oxytocin uncaging can accelerate the onset of mouse maternal behavior in vivo. Together, these results demonstrate that optopharmacological control of caged peptides is a robust tool with spatiotemporal precision for modulating neuropeptide signaling throughout the brain and body.

4.
Front Mol Neurosci ; 15: 891537, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35721318

RESUMEN

Brain-derived Neurotrophic Factor (BDNF) binds to the TrkB tyrosine kinase receptor, which dictates the sensitivity of neurons to BDNF. A unique feature of TrkB is the ability to be activated by small molecules in a process called transactivation. Here we report that the brain neuropeptide oxytocin increases BDNF TrkB activity in primary cortical neurons and in the mammalian neocortex during postnatal development. Oxytocin produces its effects through a G protein-coupled receptor (GPCR), however, the receptor signaling events that account for its actions have not been fully defined. We find oxytocin rapidly transactivates TrkB receptors in bath application of acute brain slices of 2-week-old mice and in primary cortical culture by increasing TrkB receptor tyrosine phosphorylation. The effects of oxytocin signaling could be distinguished from the related vasopressin receptor. The transactivation of TrkB receptors by oxytocin enhances the clustering of gephyrin, a scaffold protein responsible to coordinate inhibitory responses. Because oxytocin displays pro-social functions in maternal care, cognition, and social attachment, it is currently a focus of therapeutic strategies in autism spectrum disorders. Interestingly, oxytocin and BDNF are both implicated in the pathophysiology of depression, schizophrenia, anxiety, and cognition. These results imply that oxytocin may rely upon crosstalk with BDNF signaling to facilitate its actions through receptor transactivation.

5.
J Neurosci ; 42(19): 3919-3930, 2022 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-35361702

RESUMEN

The molecular mechanisms underlying somatodendritic dopamine (DA) release remain unresolved, despite the passing of decades since its discovery. Our previous work showed robust release of somatodendritic DA in submillimolar extracellular Ca2+ concentration ([Ca2+]o). Here we tested the hypothesis that the high-affinity Ca2+ sensor synaptotagmin 7 (Syt7), is a key determinant of somatodendritic DA release and its Ca2+ dependence. Somatodendritic DA release from SNc DA neurons was assessed using whole-cell recording in midbrain slices from male and female mice to monitor evoked DA-dependent D2 receptor-mediated inhibitory currents (D2ICs). Single-cell application of an antibody to Syt7 (Syt7 Ab) decreased pulse train-evoked D2ICs, revealing a functional role for Syt7. The assessment of the Ca2+ dependence of pulse train-evoked D2ICs confirmed robust DA release in submillimolar [Ca2+]o in wild-type (WT) neurons, but loss of this sensitivity with intracellular Syt7 Ab or in Syt7 knock-out (KO) mice. In millimolar [Ca2+]o, pulse train-evoked D2ICs in Syt7 KOs showed a greater reduction in decreased [Ca2+]o than seen in WT mice; the effect on single pulse-evoked DA release, however, did not differ between genotypes. Single-cell application of a Syt1 Ab had no effect on train-evoked D2ICs in WT SNc DA neurons, but did cause a decrease in D2IC amplitude in Syt7 KOs, indicating a functional substitution of Syt1 for Syt7. In addition, Syt1 Ab decreased single pulse-evoked D2ICs in WT cells, indicating the involvement of Syt1 in tonic DA release. Thus, Syt7 and Syt1 play complementary roles in somatodendritic DA release from SNc DA neurons.SIGNIFICANCE STATEMENT The respective Ca2+ dependence of somatodendritic and axonal dopamine (DA) release differs, resulting in the persistence of somatodendritic DA release in submillimolar Ca2+ concentrations too low to support axonal release. We demonstrate that synaptotagmin7 (Syt7), a high-affinity Ca2+ sensor, underlies phasic somatodendritic DA release and its Ca2+ sensitivity in the substantia nigra pars compacta. In contrast, we found that synaptotagmin 1 (Syt1), the Ca2+ sensor underlying axonal DA release, plays a role in tonic, but not phasic, somatodendritic DA release in wild-type mice. However, Syt1 can facilitate phasic DA release after Syt7 deletion. Thus, we show that both Syt1 and Syt7 act as Ca2+ sensors subserving different aspects of somatodendritic DA release processes.


Asunto(s)
Dopamina , Sustancia Negra , Sinaptotagmina I , Sinaptotagminas , Animales , Dendritas , Dopamina/farmacología , Neuronas Dopaminérgicas , Estimulación Eléctrica , Femenino , Masculino , Ratones , Sinaptotagmina I/genética , Sinaptotagminas/genética
6.
Am J Phys Med Rehabil ; 101(10): 937-946, 2022 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34864768

RESUMEN

OBJECTIVE: This study's aims were to refine Music Upper Limb Therapy-Integrated (MULT-I) to create a feasible enriched environment for stroke rehabilitation and compare its biologic and behavioral effects with that of a home exercise program (HEP). DESIGN: This was a randomized mixed-methods study of 30 adults with post-stroke hemiparesis. Serum brain-derived neurotrophic factor and oxytocin levels measured biologic effects, and upper limb function, disability, quality of life, and emotional well-being were assessed as behavioral outcomes. Participant experiences were explored using semistructured interviews. RESULTS: MULT-I participants showed reduced depression from preintervention to postintervention as compared with HEP participants. Brain-derived neurotrophic factor levels significantly increased for MULT-I participants but decreased for HEP participants, with a significant difference between groups after excluding those with post-stroke depression. MULT-I participants additionally improved quality of life and self-perceived physical strength, mobility, activity, participation, and recovery from preintervention to postintervention. HEP participants improved upper limb function. Qualitatively, MULT-I provided psychosocial support and enjoyment, whereas HEP supported self-management of rehabilitation. CONCLUSIONS: Implementation of a music-enriched environment is feasible, reduces post-stroke depression, and may enhance the neural environment for recovery via increases in brain-derived neurotrophic factor levels. Self-management of rehabilitation through an HEP may further improve upper limb function.


Asunto(s)
Productos Biológicos , Musicoterapia , Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Adulto , Factor Neurotrófico Derivado del Encéfalo , Depresión/etiología , Depresión/terapia , Terapia por Ejercicio/métodos , Humanos , Proyectos Piloto , Calidad de Vida , Recuperación de la Función , Rehabilitación de Accidente Cerebrovascular/métodos , Resultado del Tratamiento , Extremidad Superior
7.
J Cell Sci ; 134(17)2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34369573

RESUMEN

Synaptic strength is altered during synaptic plasticity by controlling the number of AMPA receptors (AMPARs) at excitatory synapses. During long-term potentiation and synaptic upscaling, AMPARs are accumulated at synapses to increase synaptic strength. Neuronal activity leads to phosphorylation of AMPAR subunit GluA1 (also known as GRIA1) and subsequent elevation of GluA1 surface expression, either by an increase in receptor forward trafficking to the synaptic membrane or a decrease in receptor internalization. However, the molecular pathways underlying GluA1 phosphorylation-induced elevation of surface AMPAR expression are not completely understood. Here, we employ fluorescence recovery after photobleaching (FRAP) to reveal that phosphorylation of GluA1 serine 845 (S845) predominantly plays a role in receptor internalization, rather than forward trafficking, during synaptic plasticity. Notably, internalization of AMPARs depends upon the clathrin adaptor AP2, which recruits cargo proteins into endocytic clathrin-coated pits. In fact, we further reveal that an increase in GluA1 S845 phosphorylation upon two distinct forms of synaptic plasticity diminishes the binding of the AP2 adaptor, reducing internalization and resulting in elevation of GluA1 surface expression. We thus demonstrate a mechanism of GluA1 phosphorylation-regulated clathrin-mediated internalization of AMPARs.


Asunto(s)
Clatrina , Receptores AMPA , Clatrina/metabolismo , Hipocampo/metabolismo , Potenciación a Largo Plazo , Fosforilación , Receptores AMPA/genética , Receptores AMPA/metabolismo , Sinapsis/metabolismo
8.
Biochim Biophys Acta Mol Cell Res ; 1867(8): 118732, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32360667

RESUMEN

Nitric oxide is an important neuromodulator in the CNS, and its production within neurons is modulated by NMDA receptors and requires a fine-tuned availability of L-arginine. We have previously shown that globally inhibiting protein synthesis mobilizes intracellular L-arginine "pools" in retinal neurons, which concomitantly enhances neuronal nitric oxide synthase-mediated nitric oxide production. Activation of NMDA receptors also induces local inhibition of protein synthesis and L-arginine intracellular accumulation through calcium influx and stimulation of eucariotic elongation factor type 2 kinase. We hypothesized that protein synthesis inhibition might also increase intracellular L-arginine availability to induce nitric oxide-dependent activation of downstream signaling pathways. Here we show that nitric oxide produced by inhibiting protein synthesis (using cycloheximide or anisomycin) is readily coupled to AKT activation in a soluble guanylyl cyclase and cGKII-dependent manner. Knockdown of cGKII prevents cycloheximide or anisomycin-induced AKT activation and its nuclear accumulation. Moreover, in retinas from cGKII knockout mice, cycloheximide was unable to enhance AKT phosphorylation. Indeed, cycloheximide also produces an increase of ERK phosphorylation which is abrogated by a nitric oxide synthase inhibitor. In summary, we show that inhibition of protein synthesis is a previously unanticipated driving force for nitric oxide generation and activation of downstream signaling pathways including AKT and ERK in cultured retinal cells. These results may be important for the regulation of synaptic signaling and neuronal development by NMDA receptors as well as for solving conflicting data observed when using protein synthesis inhibitors for studying neuronal survival during development as well in behavior and memory studies.


Asunto(s)
Proteína Quinasa Dependiente de GMP Cíclico Tipo II/metabolismo , Óxido Nítrico/metabolismo , Inhibidores de la Síntesis de la Proteína/farmacología , Retina/metabolismo , Transducción de Señal/efectos de los fármacos , Animales , Arginina/metabolismo , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Embrión de Pollo , Pollos , Proteína Quinasa Dependiente de GMP Cíclico Tipo II/genética , Quinasa del Factor 2 de Elongación/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuronas/metabolismo , Nitratos/metabolismo , Óxido Nítrico Sintasa de Tipo I/metabolismo , Nitritos , Fosforilación
9.
Neuron ; 97(3): 555-570.e6, 2018 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-29395909

RESUMEN

The axon initial segment (AIS) is the site of action potential generation and a locus of activity-dependent homeostatic plasticity. A multimeric complex of sodium channels, linked via a cytoskeletal scaffold of ankyrin G and beta IV spectrin to submembranous actin rings, mediates these functions. The mechanisms that specify the AIS complex to the proximal axon and underlie its plasticity remain poorly understood. Here we show phosphorylated myosin light chain (pMLC), an activator of contractile myosin II, is highly enriched in the assembling and mature AIS, where it associates with actin rings. MLC phosphorylation and myosin II contractile activity are required for AIS assembly, and they regulate the distribution of AIS components along the axon. pMLC is rapidly lost during depolarization, destabilizing actin and thereby providing a mechanism for activity-dependent structural plasticity of the AIS. Together, these results identify pMLC/myosin II activity as a common link between AIS assembly and plasticity.


Asunto(s)
Actinas/metabolismo , Segmento Inicial del Axón/metabolismo , Cadenas Ligeras de Miosina/metabolismo , Miosina Tipo II/metabolismo , Citoesqueleto de Actina/metabolismo , Animales , Corteza Cerebral/metabolismo , Femenino , Hipocampo/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Fosfatasa de Miosina de Cadena Ligera/genética , Fosforilación , Cultivo Primario de Células , Ratas Sprague-Dawley
10.
EMBO J ; 36(2): 232-244, 2017 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-27856517

RESUMEN

mGluR long-term depression (mGluR-LTD) is a form of synaptic plasticity induced at excitatory synapses by metabotropic glutamate receptors (mGluRs). mGluR-LTD reduces synaptic strength and is relevant to learning and memory, autism, and sensitization to cocaine; however, the mechanism is not known. Here we show that activation of Group I mGluRs in medium spiny neurons induces trafficking of GluA2 from the endoplasmic reticulum (ER) to the synapse by enhancing GluA2 binding to essential COPII vesicle proteins, Sec23 and Sec13. GluA2 exit from the ER further depends on IP3 and Ryanodine receptor-controlled Ca2+ release as well as active translation. Synaptic insertion of GluA2 is coupled to removal of high-conducting Ca2+-permeable AMPA receptors from synapses, resulting in synaptic depression. This work demonstrates a novel mechanism in which mGluR signals release AMPA receptors rapidly from the ER and couple ER release to GluA2 synaptic insertion and GluA1 removal.


Asunto(s)
Retículo Endoplásmico/metabolismo , Neuronas/fisiología , Receptores AMPA/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animales , Calcio/metabolismo , Células Cultivadas , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Ratas Sprague-Dawley , Canal Liberador de Calcio Receptor de Rianodina/metabolismo
11.
Neuropharmacology ; 113(Pt A): 426-433, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27793771

RESUMEN

Lithium (Li+) is a drug widely employed for treating bipolar disorder, however the mechanism of action is not known. Here we study the effects of Li+ in cultured hippocampal neurons on a synaptic complex consisting of δ-catenin, a protein associated with cadherins whose mutation is linked to autism, and GRIP, an AMPA receptor (AMPAR) scaffolding protein, and the AMPAR subunit, GluA2. We show that Li+ elevates the level of δ-catenin in cultured neurons. δ-catenin binds to the ABP and GRIP proteins, which are synaptic scaffolds for GluA2. We show that Li+ increases the levels of GRIP and GluA2, consistent with Li+-induced elevation of δ-catenin. Using GluA2 mutants, we show that the increase in surface level of GluA2 requires GluA2 interaction with GRIP. The amplitude but not the frequency of mEPSCs was also increased by Li+ in cultured hippocampal neurons, confirming a functional effect and consistent with AMPAR stabilization at synapses. Furthermore, animals fed with Li+ show elevated synaptic levels of δ-catenin, GRIP, and GluA2 in the hippocampus, also consistent with the findings in cultured neurons. This work supports a model in which Li+ stabilizes δ-catenin, thus elevating a complex consisting of δ-catenin, GRIP and AMPARs in synapses of hippocampal neurons. Thus, the work suggests a mechanism by which Li+ can alter brain synaptic function that may be relevant to its pharmacologic action in treatment of neurological disease.


Asunto(s)
Cateninas/biosíntesis , Hipocampo/metabolismo , Litio/farmacología , Neuronas/metabolismo , Receptores AMPA/biosíntesis , Sinapsis/metabolismo , Animales , Células Cultivadas , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Técnicas de Silenciamiento del Gen , Hipocampo/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Neuronas/efectos de los fármacos , Ratas , Sinapsis/efectos de los fármacos , Catenina delta
12.
Learn Mem ; 23(8): 435-41, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27421896

RESUMEN

Phosphorylation of GluA1, a subunit of AMPA receptors (AMPARs), is critical for AMPAR synaptic trafficking and control of synaptic transmission. cGMP-dependent protein kinase II (cGKII) mediates this phosphorylation, and cGKII knockout (KO) affects GluA1 phosphorylation and alters animal behavior. Notably, GluA1 phosphorylation in the KO hippocampus is increased as a functional compensation for gene deletion, while such compensation is absent in the prefrontal cortex. Thus, there are brain region-specific effects of cGKII KO on AMPAR trafficking, which could affect animal behavior. Here, we show that GluA1 phosphorylation levels differ in various brain regions, and specific behaviors are altered according to region-specific changes in GluA1 phosphorylation. Moreover, we identified distinct regulations of phosphatases in different brain regions, leading to regional heterogeneity of GluA1 phosphorylation in the KO brain. Our work demonstrates region-specific changes in GluA1 phosphorylation in cGKII KO mice and corresponding effects on cognitive performance. We also reveal distinct regulation of phosphatases in different brain region in which region-specific effects of kinase gene KO arise and can selectively alter animal behavior.


Asunto(s)
Conducta Animal/fisiología , Encéfalo/metabolismo , Proteína Quinasa Dependiente de GMP Cíclico Tipo II/metabolismo , Transporte de Proteínas , Receptores AMPA/metabolismo , Amígdala del Cerebelo/metabolismo , Animales , Condicionamiento Clásico , Proteína Quinasa Dependiente de GMP Cíclico Tipo II/genética , Depresión/fisiopatología , Miedo/fisiología , Hipocampo/metabolismo , Masculino , Ratones Endogámicos C57BL , Bulbo Olfatorio/metabolismo , Fosforilación , Corteza Prefrontal/metabolismo , Olfato/fisiología
13.
Proc Natl Acad Sci U S A ; 112(10): 3122-7, 2015 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-25713349

RESUMEN

Gene knockout (KO) does not always result in phenotypic changes, possibly due to mechanisms of functional compensation. We have studied mice lacking cGMP-dependent kinase II (cGKII), which phosphorylates GluA1, a subunit of AMPA receptors (AMPARs), and promotes hippocampal long-term potentiation (LTP) through AMPAR trafficking. Acute cGKII inhibition significantly reduces LTP, whereas cGKII KO mice show no LTP impairment. Significantly, the closely related kinase, cGKI, does not compensate for cGKII KO. Here, we describe a previously unidentified pathway in the KO hippocampus that provides functional compensation for the LTP impairment observed when cGKII is acutely inhibited. We found that in cultured cGKII KO hippocampal neurons, cGKII-dependent phosphorylation of inositol 1,4,5-trisphosphate receptors was decreased, reducing cytoplasmic Ca(2+) signals. This led to a reduction of calcineurin activity, thereby stabilizing GluA1 phosphorylation and promoting synaptic expression of Ca(2+)-permeable AMPARs, which in turn induced a previously unidentified form of LTP as a compensatory response in the KO hippocampus. Calcineurin-dependent Ca(2+)-permeable AMPAR expression observed here is also used during activity-dependent homeostatic synaptic plasticity. Thus, a homeostatic mechanism used during activity reduction provides functional compensation for gene KO in the cGKII KO hippocampus.


Asunto(s)
Calcio/metabolismo , Proteína Quinasa Dependiente de GMP Cíclico Tipo II/metabolismo , Hipocampo/enzimología , Receptores AMPA/metabolismo , Animales , Proteína Quinasa Dependiente de GMP Cíclico Tipo II/genética , Hipocampo/efectos de los fármacos , Hipocampo/fisiología , Homeostasis/efectos de los fármacos , Potenciación a Largo Plazo , Ratones , Ratones Noqueados , Fosforilación , Sinapsis/enzimología , Sinapsis/metabolismo , Tetrodotoxina/farmacología
14.
J Biol Chem ; 289(27): 19218-30, 2014 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-24831007

RESUMEN

The GluA2 subunit of the AMPA receptor (AMPAR) dominantly blocks AMPAR Ca(2+) permeability, and its trafficking to the synapse regulates AMPAR-dependent synapse Ca(2+) permeability. Here we show that GluA2 trafficking from the endoplasmic reticulum (ER) to the plasma membrane of cultured hippocampal neurons requires Ca(2+) release from internal stores, the activity of Ca(2+)/calmodulin activated kinase II (CaMKII), and GluA2 interaction with the PDZ protein, PICK1. We show that upon Ca(2+) release from the ER via the IP3 and ryanodine receptors, CaMKII that is activated enters a complex that contains PICK1, dependent upon the PICK1 BAR (Bin-amphiphysin-Rvs) domain, and that interacts with the GluA2 C-terminal domain and stimulates GluA2 ER exit and surface trafficking. This study reveals a novel mechanism of regulation of trafficking of GluA2-containing receptors to the surface under the control of intracellular Ca(2+) dynamics and CaMKII activity.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Calcio/metabolismo , Proteínas Portadoras/metabolismo , Retículo Endoplásmico/metabolismo , Proteínas Nucleares/metabolismo , Receptores AMPA/metabolismo , Animales , Proteínas Portadoras/química , Línea Celular , Membrana Celular/metabolismo , Proteínas del Citoesqueleto , Retroalimentación Fisiológica , Hipocampo/citología , Humanos , Fosfatos de Inositol/metabolismo , Neuronas/citología , Neuronas/metabolismo , Proteínas Nucleares/química , Estructura Terciaria de Proteína , Transporte de Proteínas , Ratas
15.
J Neurosci ; 33(14): 6123-32, 2013 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-23554493

RESUMEN

The mechanisms by which natural rewards such as sugar affect synaptic transmission and behavior are largely unexplored. Here, we investigate regulation of nucleus accumbens synapses by sucrose intake. Previous studies have shown that AMPA receptor (AMPAR) trafficking is a major mechanism for regulating synaptic strength, and that in vitro, trafficking of AMPARs containing the GluA1 subunit takes place by a two-step mechanism involving extrasynaptic and then synaptic receptor transport. We report that in rat, repeated daily ingestion of a 25% sucrose solution transiently elevated spontaneous locomotion and potentiated accumbens core synapses through incorporation of Ca(2+)-permeable AMPA receptors (CPARs), which are GluA1-containing, GluA2-lacking AMPARs. Electrophysiological, biochemical, and quantitative electron microscopy studies revealed that sucrose training (7 d) induced a stable (>24 h) intraspinous GluA1 population, and that in these rats a single sucrose stimulus rapidly (5 min) but transiently (<24 h) elevated GluA1 at extrasynaptic sites. CPARs and dopamine D1 receptors were required in vivo for elevated locomotion after sucrose ingestion. Significantly, a 7 d protocol of daily ingestion of a 3% solution of saccharin, a noncaloric sweetener, induced synaptic GluA1 similarly to 25% sucrose ingestion. These findings identify multistep GluA1 trafficking, previously described in vitro, as a mechanism for acute regulation of synaptic transmission in vivo by a natural orosensory reward. Trafficking is stimulated by a chemosensory pathway that is not dependent on the caloric value of sucrose.


Asunto(s)
Neuronas/metabolismo , Receptores AMPA/metabolismo , Sacarosa/administración & dosificación , Edulcorantes/administración & dosificación , Animales , Proteínas Portadoras , Condicionamiento Operante/fisiología , Dopamina beta-Hidroxilasa/metabolismo , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Técnicas In Vitro , Locomoción/fisiología , Masculino , Microscopía Electrónica de Transmisión , Neuronas/efectos de los fármacos , Núcleo Accumbens/citología , Fosfoproteínas/metabolismo , Densidad Postsináptica/metabolismo , Densidad Postsináptica/ultraestructura , Transporte de Proteínas/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Fracciones Subcelulares/metabolismo , Sinaptosomas/metabolismo , Sinaptosomas/ultraestructura
16.
J Neurosci ; 31(34): 12083-93, 2011 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-21865451

RESUMEN

The proteolytic machinery comprising metalloproteases and γ-secretase, an intramembrane aspartyl protease involved in Alzheimer's disease, cleaves several substrates in addition to the extensively studied amyloid precursor protein. Some of these substrates, such as N-cadherin, are synaptic proteins involved in synapse remodeling and maintenance. Here we show, in rats and mice, that metalloproteases and γ-secretase are physiologic regulators of synapses. Both proteases are synaptic, with γ-secretase tethered at the synapse by δ-catenin, a synaptic scaffolding protein that also binds to N-cadherin and, through scaffolds, to AMPA receptor and a metalloprotease. Activity-dependent proteolysis by metalloproteases and γ-secretase takes place at both sides of the synapse, with the metalloprotease cleavage being NMDA receptor-dependent. This proteolysis decreases levels of synaptic proteins and diminishes synaptic transmission. Our results suggest that activity-dependent substrate cleavage by synaptic metalloproteases and γ-secretase modifies synaptic transmission, providing a novel form of synaptic autoregulation.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/fisiología , Hipocampo/enzimología , Homeostasis/fisiología , Metaloproteasas/fisiología , Sinapsis/enzimología , Transmisión Sináptica/fisiología , Animales , Cateninas/deficiencia , Cateninas/genética , Células Cultivadas , Femenino , Masculino , Ratones , Ratones Noqueados , Ratas , Ratas Sprague-Dawley , Membranas Sinápticas/enzimología , Membranas Sinápticas/ultraestructura , Catenina delta
17.
Mol Cell Neurosci ; 38(2): 189-202, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18417360

RESUMEN

Phosphorylation of S880 within the GluR2 C-terminus has been reported to promote endocytosis of AMPA receptors (AMPARs) by preventing GluR2 interaction with the putative synaptic anchoring proteins GRIP and ABP. It is not yet established however, whether S880 phosphorylation induces removal of AMPARs from synaptic sites, and the trafficking of phosphorylated GluR2 subunits with surface and endocytosed GluR2 has not been directly compared within the same intact neurons. Here we show that phosphorylation of GluR2 subunits by PKC activated with phorbol esters is compartmentally restricted to receptors located at the cell surface. Endogenous AMPARs containing S880-phosphorylated GluR2 remained highly synaptic and colocalized with postsynaptic markers to the same extent as AMPARs which did not contain S880-phosphorylated GluR2. Moreover, following S880 phosphorylation, exogenous GluR2 homomers were found specifically at the cell surface and did not co-traffic with the internalized endosomal GluR2 population. We also show that GluR2 is endogenously phosphorylated by a constitutively active kinase pharmacologically related to PKC, and this phosphorylation is opposed by the protein phosphatase PP1. Our results demonstrate a population of hippocampal AMPARs which do not require interaction with GRIP/ABP for synaptic anchorage.


Asunto(s)
Endocitosis/fisiología , Hipocampo/citología , Neuronas/metabolismo , Receptores AMPA/genética , Receptores AMPA/metabolismo , Sinapsis/metabolismo , Animales , Células COS , Chlorocebus aethiops , Dendritas/fisiología , Mutagénesis , Proteínas del Tejido Nervioso/metabolismo , Neuronas/citología , Fosforilación , Proteína Quinasa C/metabolismo , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Proteínas Asociadas a SAP90-PSD95 , Serina/metabolismo , Virus Sindbis , Transfección
18.
Neuron ; 56(4): 670-88, 2007 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-18031684

RESUMEN

Trafficking of AMPA receptors (AMPARs) is regulated by specific interactions of the subunit intracellular C-terminal domains (CTDs) with other proteins, but the mechanisms involved in this process are still unclear. We have found that the GluR1 CTD binds to cGMP-dependent protein kinase II (cGKII) adjacent to the kinase catalytic site. Binding of GluR1 is increased when cGKII is activated by cGMP. cGKII and GluR1 form a complex in the brain, and cGKII in this complex phosphorylates GluR1 at S845, a site also phosphorylated by PKA. Activation of cGKII by cGMP increases the surface expression of AMPARs at extrasynaptic sites. Inhibition of cGKII activity blocks the surface increase of GluR1 during chemLTP and reduces LTP in the hippocampal slice. This work identifies a pathway, downstream from the NMDA receptor (NMDAR) and nitric oxide (NO), which stimulates GluR1 accumulation in the plasma membrane and plays an important role in synaptic plasticity.


Asunto(s)
Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Hipocampo/metabolismo , Plasticidad Neuronal/fisiología , Neuronas/metabolismo , Receptores AMPA/metabolismo , Transmisión Sináptica/fisiología , Animales , Dominio Catalítico , Línea Celular , Células Cultivadas , Proteína Quinasa Dependiente de GMP Cíclico Tipo II , Proteínas Quinasas Dependientes de GMP Cíclico/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Hipocampo/ultraestructura , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Neuronas/efectos de los fármacos , Neuronas/ultraestructura , Técnicas de Cultivo de Órganos , Fosforilación , Unión Proteica/fisiología , Transporte de Proteínas/efectos de los fármacos , Transporte de Proteínas/fisiología , Ratas , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
19.
J Neurosci ; 27(32): 8505-16, 2007 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-17687028

RESUMEN

Cadherins function in the adhesion of presynaptic and postsynaptic membranes at excitatory synapses. Here we show that the cadherin-associated protein neural plakophilin-related arm protein (NPRAP; also called delta-catenin) binds via a postsynaptic density-95 (PSD-95)/discs large/zona occludens-1 (PDZ) interaction to AMPA receptor (AMPAR)-binding protein (ABP) and the related glutamate receptor (GluR)-interacting protein (GRIP), two multi-PDZ proteins that bind the GluR2 and GluR3 AMPAR subunits. The resulting cadherin-NPRAP-ABP/GRIP complexes serve as anchorages for AMPARs. Exogenous NPRAP that was bound to cadherins at adherens junctions of Madin-Darby canine kidney cells recruited ABP from the cytosol to form cadherin-NPRAP-ABP complexes, dependent on NPRAP interaction with the ABP PDZ domain 2. The cadherin-NPRAP-ABP complexes also bound GluR2. In cultured hippocampal neurons, dominant-negative mutants of NPRAP designed to disrupt tethering of ABP to NPRAP-cadherin complexes reduced surface levels of endogenous GluR2, indicating that interaction with cadherin-NPRAP-ABP complexes stabilized GluR2 at the neuronal plasma membrane. Cadherins, NPRAP, GRIP, and GluR2 copurified in the fractionation of synaptosomes and the postsynaptic density, two fractions enriched in synaptic proteins. Furthermore, synaptosomes contain NPRAP-GRIP complexes, and NPRAP localizes with the postsynaptic marker PSD-95 and with AMPARs and GRIP at spines of hippocampal neurons. Thus, tethering is likely to take place at synaptic or perisynaptic sites. NPRAP also binds PSD-95, which is a scaffold for NMDA receptors, for AMPARs in complexes with auxiliary subunits, the TARPs (transmembrane AMPA receptor regulator proteins), and for adhesion molecules. Thus, the interaction of scaffolding proteins with cadherin-NPRAP complexes may anchor diverse signaling and adhesion molecules at cadherins.


Asunto(s)
Proteínas del Dominio Armadillo/metabolismo , Cadherinas/metabolismo , Cateninas/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Receptores AMPA/metabolismo , Sinapsis/metabolismo , Animales , Proteínas del Dominio Armadillo/análisis , Proteínas del Dominio Armadillo/genética , Sitios de Unión/fisiología , Cadherinas/análisis , Cadherinas/genética , Cateninas/análisis , Cateninas/genética , Moléculas de Adhesión Celular/metabolismo , Línea Celular , Células Cultivadas , Homólogo 4 de la Proteína Discs Large , Perros , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/análisis , Proteínas del Tejido Nervioso/genética , Neuronas/química , Fosfoproteínas/metabolismo , Unión Proteica/fisiología , Ratas , Ratas Sprague-Dawley , Receptores AMPA/análisis , Receptores AMPA/genética , Sinapsis/química , Catenina delta
20.
Nat Neurosci ; 10(4): 427-35, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17334360

RESUMEN

Neuronal development, plasticity and survival require activity-dependent synapse-to-nucleus signaling. Most studies implicate an activity-dependent regulation of gene expression in this phenomenon. However, little is known about other nuclear functions that are regulated by synaptic activity. Here we show that a newly identified component of rat postsynaptic densities (PSDs), AIDA-1d, can regulate global protein synthesis by altering nucleolar numbers. AIDA-1d binds to the first two postsynaptic density-95/Discs large/zona occludens-1 (PDZ) domains of the scaffolding protein PSD-95 via its C-terminal three amino acids. Stimulation of NMDA receptors (NMDARs), which are also bound to PSD-95, results in a Ca2+-independent translocation of AIDA-1d to the nucleus, where it couples to Cajal bodies and induces Cajal body-nucleolar association. Long-term neuronal stimulation results in an AIDA-1-dependent increase in nucleolar numbers and protein synthesis. We propose that AIDA-1d mediates a link between synaptic activity and control of protein biosynthetic capacity by regulating nucleolar assembly.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Nucléolo Celular/metabolismo , Neuronas/fisiología , Neuronas/ultraestructura , Biosíntesis de Proteínas/fisiología , Transducción de Señal/fisiología , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Nucléolo Celular/efectos de los fármacos , Células Cultivadas , Homólogo 4 de la Proteína Discs Large , Embrión de Mamíferos , Inhibidores Enzimáticos/farmacología , Agonistas de Aminoácidos Excitadores/farmacología , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Inmunoprecipitación , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , N-Metilaspartato/farmacología , Neuronas/efectos de los fármacos , Fosfoproteínas/metabolismo , Biosíntesis de Proteínas/efectos de los fármacos , Estructura Terciaria de Proteína , Transporte de Proteínas/efectos de los fármacos , ARN Interferente Pequeño/farmacología , Ratas , Sinapsis/metabolismo , Transfección/métodos , Proteína de la Zonula Occludens-1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA