Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38826457

RESUMEN

Protein phosphatase, Mg2+/Mn2+ dependent 1D (PPM1D), is a serine/threonine phosphatase that is recurrently activated in cancer, regulates the DNA damage response (DDR), and suppresses the activation of p53. Consistent with its oncogenic properties, genetic loss or pharmacologic inhibition of PPM1D impairs tumor growth and sensitizes cancer cells to cytotoxic therapies in a wide range of preclinical models. Given the therapeutic potential of targeting PPM1D specifically and the DDR and p53 pathway more generally, we sought to deepen our biological understanding of PPM1D as a drug target and determine how PPM1D inhibition differs from other therapeutic approaches to activate the DDR. We performed a high throughput screen to identify new allosteric inhibitors of PPM1D, then generated and optimized a suite of enzymatic, cell-based, and in vivo pharmacokinetic and pharmacodynamic assays to drive medicinal chemistry efforts and to further interrogate the biology of PPM1D. Importantly, this drug discovery platform can be readily adapted to broadly study the DDR and p53. We identified compounds distinct from previously reported allosteric inhibitors and showed in vivo on-target activity. Our data suggest that the biological effects of inhibiting PPM1D are distinct from inhibitors of the MDM2-p53 interaction and standard cytotoxic chemotherapies. These differences also highlight the potential therapeutic contexts in which targeting PPM1D would be most valuable. Therefore, our studies have identified a series of new PPM1D inhibitors, generated a suite of in vitro and in vivo assays that can be broadly used to interrogate the DDR, and provided important new insights into PPM1D as a drug target.

2.
ACS Chem Biol ; 17(5): 1131-1142, 2022 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-35439415

RESUMEN

Type 2 diabetes is marked by progressive ß-cell failure, leading to loss of ß-cell mass. Increased levels of circulating glucose and free fatty acids associated with obesity lead to ß-cell glucolipotoxicity. There are currently no therapeutic options to address this facet of ß-cell loss in obese type 2 diabetes patients. To identify small molecules capable of protecting ß-cells, we performed a high-throughput screen of 20,876 compounds in the rat insulinoma cell line INS-1E in the presence of elevated glucose and palmitate. We found 312 glucolipotoxicity-protective small molecules (1.49% hit rate) capable of restoring INS-1E viability, and we focused on 17 with known biological targets. 16 of the 17 compounds were kinase inhibitors with activity against specific families including but not limited to cyclin-dependent kinases (CDK), PI-3 kinase (PI3K), Janus kinase (JAK), and Rho-associated kinase 2 (ROCK2). 7 of the 16 kinase inhibitors were PI3K inhibitors. Validation studies in dissociated human islets identified 10 of the 17 compounds, namely, KD025, ETP-45658, BMS-536924, AT-9283, PF-03814735, torin-2, AZD5438, CP-640186, ETP-46464, and GSK2126458 that reduced glucolipotoxicity-induced ß-cell death. These 10 compounds decreased markers of glucolipotoxicity including caspase activation, mitochondrial depolarization, and increased calcium flux. Together, these results provide a path forward toward identifying novel treatments to preserve ß-cell viability in the face of glucolipotoxicity.


Asunto(s)
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Animales , Apoptosis , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Glucosa/metabolismo , Humanos , Células Secretoras de Insulina/metabolismo , Palmitatos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Ratas
3.
Nat Chem Biol ; 12(12): 1023-1030, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27694802

RESUMEN

Asparagine (N)-linked glycosylation is a protein modification critical for glycoprotein folding, stability, and cellular localization. To identify small molecules that inhibit new targets in this biosynthetic pathway, we initiated a cell-based high-throughput screen and lead-compound-optimization campaign that delivered a cell-permeable inhibitor, NGI-1. NGI-1 targets oligosaccharyltransferase (OST), a hetero-oligomeric enzyme that exists in multiple isoforms and transfers oligosaccharides to recipient proteins. In non-small-cell lung cancer cells, NGI-1 blocks cell-surface localization and signaling of the epidermal growth factor receptor (EGFR) glycoprotein, but selectively arrests proliferation in only those cell lines that are dependent on EGFR (or fibroblast growth factor, FGFR) for survival. In these cell lines, OST inhibition causes cell-cycle arrest accompanied by induction of p21, autofluorescence, and cell morphology changes, all hallmarks of senescence. These results identify OST inhibition as a potential therapeutic approach for treating receptor-tyrosine-kinase-dependent tumors and provides a chemical probe for reversibly regulating N-linked glycosylation in mammalian cells.


Asunto(s)
Benzamidas/farmacología , Senescencia Celular/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Hexosiltransferasas/antagonistas & inhibidores , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas Tirosina Quinasas Receptoras/antagonistas & inhibidores , Sulfonamidas/farmacología , Benzamidas/química , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/química , Hexosiltransferasas/metabolismo , Ensayos Analíticos de Alto Rendimiento , Humanos , Proteínas de la Membrana/metabolismo , Estructura Molecular , Proteínas Tirosina Quinasas Receptoras/metabolismo , Relación Estructura-Actividad , Sulfonamidas/química
4.
Cell Metab ; 21(1): 126-37, 2015 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-25565210

RESUMEN

Defects in insulin secretion play a central role in the pathogenesis of type 2 diabetes, yet the mechanisms driving beta-cell dysfunction remain poorly understood, and therapies to preserve glucose-dependent insulin release are inadequate. We report a luminescent insulin secretion assay that enables large-scale investigations of beta-cell function, created by inserting Gaussia luciferase into the C-peptide portion of proinsulin. Beta-cell lines expressing this construct cosecrete luciferase and insulin in close correlation, under both standard conditions or when stressed by cytokines, fatty acids, or ER toxins. We adapted the reporter for high-throughput assays and performed a 1,600-compound pilot screen, which identified several classes of drugs inhibiting secretion, as well as glucose-potentiated secretagogues that were confirmed to have activity in primary human islets. Requiring 40-fold less time and expense than the traditional ELISA, this assay may accelerate the identification of pathways governing insulin secretion and compounds that safely augment beta-cell function in diabetes.


Asunto(s)
Ácidos Grasos/farmacología , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Células Cultivadas , Citocinas/farmacología , Ensayo de Inmunoadsorción Enzimática , Genes Reporteros , Glucosa/farmacología , Ensayos Analíticos de Alto Rendimiento , Humanos , Insulina/genética , Secreción de Insulina , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/efectos de los fármacos , Luciferasas/genética , Luciferasas/metabolismo , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/genética , Tapsigargina/toxicidad
5.
Bioorg Med Chem Lett ; 23(10): 3039-43, 2013 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-23562243

RESUMEN

A high-throughput screen (HTS) of the MLPCN library using a homogenous fluorescence polarization assay identified a small molecule as a first-in-class direct inhibitor of Keap1-Nrf2 protein-protein interaction. The HTS hit has three chiral centers; a combination of flash and chiral chromatographic separation demonstrated that Keap1-binding activity resides predominantly in one stereoisomer (SRS)-5 designated as ML334 (LH601A), which is at least 100× more potent than the other stereoisomers. The stereochemistry of the four cis isomers was assigned using X-ray crystallography and confirmed using stereospecific synthesis. (SRS)-5 is functionally active in both an ARE gene reporter assay and an Nrf2 nuclear translocation assay. The stereospecific nature of binding between (SRS)-5 and Keap1 as well as the preliminary but tractable structure-activity relationships support its use as a lead for our ongoing optimization.


Asunto(s)
Descubrimiento de Drogas , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Isoquinolinas/farmacología , Imagen Molecular , Sondas Moleculares/farmacología , Factor 2 Relacionado con NF-E2/metabolismo , Ftalimidas/farmacología , Bibliotecas de Moléculas Pequeñas/farmacología , Cristalografía por Rayos X , Relación Dosis-Respuesta a Droga , Polarización de Fluorescencia , Ensayos Analíticos de Alto Rendimiento , Humanos , Isoquinolinas/química , Proteína 1 Asociada A ECH Tipo Kelch , Modelos Moleculares , Sondas Moleculares/química , Estructura Molecular , Ftalimidas/química , Unión Proteica/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/química , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...