Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Front Bioeng Biotechnol ; 10: 972653, 2022.
Article En | MEDLINE | ID: mdl-36159676

Carbon capture and utilization has been proposed as one strategy to combat global warming. Microbial electrolysis cells (MECs) combine the biological conversion of carbon dioxide (CO2) with the formation of valuable products such as methane. This study was motivated by the surprising gap in current knowledge about the utilization of real exhaust gas as a CO2 source for methane production in a fully biocatalyzed MEC. Therefore, two steel mill off-gases differing in composition were tested in a two-chamber MEC, consisting of an organic substrate-oxidizing bioanode and a methane-producing biocathode, by applying a constant anode potential. The methane production rate in the MEC decreased immediately when steel mill off-gas was tested, which likely inhibited anaerobic methanogens in the presence of oxygen. However, methanogenesis was still ongoing even though at lower methane production rates than with pure CO2. Subsequently, pure CO2 was studied for methanation, and the cathodic biofilm successfully recovered from inhibition reaching a methane production rate of 10.8 L m-2d-1. Metagenomic analysis revealed Geobacter as the dominant genus forming the anodic organic substrate-oxidizing biofilms, whereas Methanobacterium was most abundant at the cathodic methane-producing biofilms.

2.
Bioresour Technol ; 323: 124573, 2021 Mar.
Article En | MEDLINE | ID: mdl-33360948

In this study, the impact of gas composition (i.e. CO, CO2 and H2 partial pressures) on CO2 utilization, growth, and acetate production was investigated in batch and continuous cultures of A. woodii. Based on an industrial blast furnace gas, H2 blending was used to study the impact of H2 availability on CO2 fixation alone and together with CO using idealized gas streams. With H2 available as an additional energy source, net CO2 fixation and CO, CO2 and H2 co-utilization was achieved in gas-limited fermentations. Using industrial blast furnace gas, up to 15.1 g l-1 acetate were produced in continuous cultures. Flux balance analysis showed that intracellular fluxes and total ATP production were dependent on the availability of H2 and CO. Overall, H2 blending was shown to be a suitable control strategy for gas fermentations and demonstrated that A. woodii is an interesting host for CO2 fixation from industrial gas streams.


Acetobacterium , Carbon Dioxide , Fermentation , Hydrogen
...