Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 22
1.
Development ; 146(22)2019 11 21.
Article En | MEDLINE | ID: mdl-31754007

The embryonic development of the pineal organ, a neuroendocrine gland on top of the diencephalon, remains enigmatic. Classic fate-mapping studies suggested that pineal progenitors originate from the lateral border of the anterior neural plate. We show here, using gene expression and fate mapping/lineage tracing in zebrafish, that pineal progenitors originate, at least in part, from the non-neural ectoderm. Gene expression in chick indicates that this non-neural origin of pineal progenitors is conserved in amniotes. Genetic repression of placodal, but not neural crest, cell fate results in pineal hypoplasia in zebrafish, while mis-expression of transcription factors known to specify placodal identity during gastrulation promotes the formation of ectopic pineal progenitors. We also demonstrate that fibroblast growth factors (FGFs) position the pineal progenitor domain within the non-neural border by repressing pineal fate and that the Otx transcription factors promote pinealogenesis by inhibiting this FGF activity. The non-neural origin of the pineal organ reveals an underlying similarity in the formation of the pineal and pituitary glands, and suggests that all CNS neuroendocrine organs may require a non-neural contribution to form neurosecretory cells.


Fibroblast Growth Factors/metabolism , Pineal Gland/cytology , Pineal Gland/embryology , Signal Transduction , Zebrafish/embryology , Animals , Animals, Genetically Modified , Cell Lineage , Chick Embryo , Ectoderm/cytology , Gastrulation , Gene Expression Regulation, Developmental , Green Fluorescent Proteins/metabolism , Neural Crest/cytology , Neural Plate/cytology , Neuroglia/cytology , Neurons/cytology , Neurosecretory Systems/metabolism , Transcription Factors/metabolism , Zebrafish Proteins/metabolism
2.
J Anat ; 235(6): 1019-1023, 2019 12.
Article En | MEDLINE | ID: mdl-31402457

The pharyngeal arches are a prominent and significant feature of vertebrate embryos. These are visible as a series of bulges on the lateral surface of the embryonic head. In humans, and other amniotes, there are five pharyngeal arches numbered 1, 2, 3, 4 and 6; note the missing '5'. This is the standard scheme for the numbering of these structures, and it is a feature of modern anatomy textbooks. In this article, we discuss the rationale behind this odd numbering, and consider its origins. One reason given is that there is a transient 5th arch that is never fully realized, while another is that this numbering reflects considerations from comparative anatomy. We show here, however, that neither of these reasons has substance. There is no evidence from embryology for a '5th' arch, and the comparative argument does not hold as it does not apply across the vertebrates. We conclude that there is no justification for this strange numbering. We suggest that the pharyngeal arches should simply be numbered 1, 2, 3, 4 and 5 as this would be in keeping with the embryology and with the general numbering of the pharyngeal arches across the vertebrates.


Head/embryology , Animals , Biological Evolution , Branchial Region/anatomy & histology , Neural Crest/anatomy & histology , Pharynx/embryology , Vertebrates/embryology
4.
Neuroscientist ; 25(2): 167-180, 2019 04.
Article En | MEDLINE | ID: mdl-29865938

The hippocampus has a critical role in cognition and human memory and is one of the most studied structures in the brain. Despite more than 400 years of research, little is known about the Ammon's horn region cornu ammonis 2 (CA2) subfield in comparison to other subfield regions (CA1, CA3, and CA4). Recent findings have shown that CA2 plays a bigger role than previously thought. Here, we review understanding of hippocampus and CA2 ontogenesis, together with basic and clinical findings about the potential role of this region in neurodegenerative disease. The CA2 has widespread anatomical connectivity, unique signaling molecules, and intrinsic electrophysiological properties. Experimental studies using in vivo models found that the CA2 region has a role in cognition, especially in social memory and object recognition. In models of epilepsy and hypoxia, the CA2 exhibits higher resilience to cell death and hypoxia in comparison with neighboring regions, and while hippocampal atrophy remains poorly understood in Parkinson's disease (PD) and dementia with Lewy bodies (DLB), findings from postmortem PD brain demonstrates clear accumulation of α-synuclein pathology in CA2, and the CA2-CA3 region shows relatively more atrophy compared with other hippocampal subfields. Taken together, there is a growing body of evidence suggesting that the CA2 can be an ideal hallmark with which to differentiate different neurodegenerative stages of PD. Here, we summarize these recent data and provide new perspectives/ideas for future investigations to unravel the contribution of the CA2 to neurodegenerative diseases.


Hippocampus/physiology , Neurodegenerative Diseases/physiopathology , Animals , Encephalitis/complications , Encephalitis/metabolism , Hippocampus/physiopathology , Humans , Lewy Body Disease/physiopathology , Neurodegenerative Diseases/complications , Neurodegenerative Diseases/metabolism , Parkinson Disease/physiopathology , alpha-Synuclein/metabolism
5.
J Anat ; 232(4): 540-553, 2018 04.
Article En | MEDLINE | ID: mdl-29280147

The circumventricular organs (CVOs) are specialised neuroepithelial structures found in the midline of the brain, grouped around the third and fourth ventricles. They mediate the communication between the brain and the periphery by performing sensory and secretory roles, facilitated by increased vascularisation and the absence of a blood-brain barrier. Surprisingly little is known about the origins of the CVOs (both developmental and evolutionary), but their functional and organisational similarities raise the question of the extent of their relationship. Here, I review our current knowledge of the embryonic development of the seven major CVOs (area postrema, median eminence, neurohypophysis, organum vasculosum of the lamina terminalis, pineal organ, subcommissural organ, subfornical organ) in embryos of different vertebrate species. Although there are conspicuous similarities between subsets of CVOs, no unifying feature characteristic of their development has been identified. Cross-species comparisons suggest that CVOs also display a high degree of evolutionary flexibility. Thus, the term 'CVO' is merely a functional definition, and features shared by multiple CVOs may be the result of homoplasy rather than ontogenetic or phylogenetic relationships.


Blood-Brain Barrier/embryology , Circumventricular Organs/embryology , Animals , Area Postrema/anatomy & histology , Area Postrema/physiology , Circumventricular Organs/anatomy & histology , Humans , Hypothalamus/embryology , Phylogeny , Pineal Gland/anatomy & histology , Pineal Gland/embryology , Pituitary Gland, Posterior/embryology , Subcommissural Organ/anatomy & histology , Subcommissural Organ/physiology , Subfornical Organ/embryology
6.
Neural Dev ; 12(1): 11, 2017 Jun 21.
Article En | MEDLINE | ID: mdl-28637511

BACKGROUND: The cells of the mesencephalic trigeminal nucleus (MTN) are the proprioceptive sensory neurons that innervate the jaw closing muscles. These cells differentiate close to the two key signalling centres that influence the dorsal midbrain, the isthmus, which mediates its effects via FGF and WNT signalling and the roof plate, which is a major source of BMP signalling as well as WNT signalling. METHODS: In this study, we have set out to analyse the importance of FGF, WNT and BMP signalling for the development of the MTN. We have employed pharmacological inhibitors of these pathways in explant cultures as well as utilising the electroporation of inhibitory constructs in vivo in the chick embryo. RESULTS: We find that interfering with either FGF or WNT signalling has pronounced effects on MTN development whilst abrogation of BMP signalling has no effect. We show that treatment of explants with either FGF or WNT antagonists results in the generation of fewer MTN neurons and affects MTN axon extension and that inhibition of both these pathways has an additive effect. To complement these studies, we have used in vivo electroporation to inhibit BMP, FGF and WNT signalling within dorsal midbrain cells prior to, and during, their differentiation as MTN neurons. Again, we find that inhibition of BMP signalling has no effect on the development of MTN neurons. We additionally find that cells electroporated with inhibitory constructs for either FGF or WNT signalling can differentiate as MTN neurons suggesting that these pathways are not required cell intrinsically for the emergence of these neurons. Indeed, we also show that explants of dorsal mesencephalon lacking both the isthmus and roof plate can generate MTN neurons. However, we did find that inhibiting FGF or WNT signalling had consequences for MTN differentiation. CONCLUSIONS: Our results suggest that the emergence of MTN neurons is an intrinsic property of the dorsal mesencephalon of gnathostomes, and that this population undergoes expansion, and maturation, along with the rest of the dorsal midbrain under the influence of FGF and WNT signalling.


Neurogenesis/physiology , Neurons/cytology , Tegmentum Mesencephali/embryology , Animals , Cell Differentiation , Chick Embryo
7.
Dev Biol ; 415(2): 314-325, 2016 07 15.
Article En | MEDLINE | ID: mdl-26777098

Prenatal exposure to ethanol results in fetal alcohol spectrum disorder (FASD), a syndrome characterised by a broad range of clinical manifestations including craniofacial dysmorphologies and neurological defects. The characterisation of the mechanisms by which ethanol exerts its teratogenic effects is difficult due to the pleiotropic nature of its actions. Different experimental model systems have been employed to investigate the aetiology of FASD. Here, I will review studies using these different model organisms that have helped to elucidate how ethanol causes the craniofacial abnormalities characteristic of FASD. In these studies, ethanol was found to impair the prechordal plate-an important embryonic signalling centre-during gastrulation and to negatively affect the induction, migration and survival of the neural crest, a cell population that generates the cartilage and most of the bones of the skull. At the cellular level, ethanol appears to inhibit Sonic hedgehog signalling, alter levels of retionoic acid activity, trigger a Ca(2+)-CamKII-dependent pathway that antagonises WNT signalling, affect cytoskeletal dynamics and increase oxidative stress. Embryos of the domestic chick Gallus gallus domesticus have played a central role in developing a working model for the effects of ethanol on craniofacial development because they are easily accessible and because key steps in craniofacial development are particularly well established in the avian embryo. I will finish this review by highlighting some potential future avenues of fetal alcohol research.


Abnormalities, Drug-Induced/embryology , Chick Embryo/drug effects , Craniofacial Abnormalities/chemically induced , Disease Models, Animal , Ethanol/toxicity , Face/embryology , Fetal Alcohol Spectrum Disorders/physiopathology , Maxillofacial Development/drug effects , Skull/embryology , Animals , Calcium Signaling/drug effects , Craniofacial Abnormalities/embryology , Embryo, Mammalian/drug effects , Embryo, Nonmammalian/drug effects , Endoderm/drug effects , Face/abnormalities , Fetal Alcohol Spectrum Disorders/pathology , Gastrula/drug effects , Genetic Predisposition to Disease , Hedgehog Proteins/physiology , Holoprosencephaly/chemically induced , Holoprosencephaly/embryology , Humans , Maxillofacial Development/physiology , Neural Crest/drug effects , Neural Crest/pathology , Signal Transduction/drug effects , Skull/abnormalities , Species Specificity , Tretinoin/physiology , Tretinoin/toxicity , Wnt Signaling Pathway/drug effects
8.
Cell Mol Life Sci ; 73(5): 923-47, 2016 Mar.
Article En | MEDLINE | ID: mdl-26667903

In order to generate the tissues and organs of a multicellular organism, different cell types have to be generated during embryonic development. The first step in this process of cellular diversification is the formation of the three germ layers: ectoderm, endoderm and mesoderm. The ectoderm gives rise to the nervous system, epidermis and various neural crest-derived tissues, the endoderm goes on to form the gastrointestinal, respiratory and urinary systems as well as many endocrine glands, and the mesoderm will form the notochord, axial skeleton, cartilage, connective tissue, trunk muscles, kidneys and blood. Classic experiments in amphibian embryos revealed the tissue interactions involved in germ layer formation and provided the groundwork for the identification of secreted and intracellular factors involved in this process. We will begin this review by summarising the key findings of those studies. We will then evaluate them in the light of more recent genetic studies that helped clarify which of the previously identified factors are required for germ layer formation in vivo, and to what extent the mechanisms identified in amphibians are conserved across other vertebrate species. Collectively, these studies have started to reveal the gene regulatory network (GRN) underlying vertebrate germ layer specification and we will conclude our review by providing examples how our understanding of this GRN can be employed to differentiate stem cells in a targeted fashion for therapeutic purposes.


Gene Expression Regulation, Developmental , Gene Regulatory Networks , Germ Layers/embryology , Signal Transduction , Animals , Germ Layers/metabolism , Humans , Stem Cells/cytology , Stem Cells/metabolism
9.
J Dev Biol ; 4(4)2016 Dec 10.
Article En | MEDLINE | ID: mdl-29615599

A surprisingly small number of signalling pathways generate a plethora of cellular responses ranging from the acquisition of multiple cell fates to proliferation, differentiation, morphogenesis and cell death. These diverse responses may be due to the dose-dependent activities of signalling factors, or to intrinsic differences in the response of cells to a given signal-a phenomenon called differential cellular competence. In this review, we focus on temporal and spatial differences in competence for Hedgehog (HH) signalling, a signalling pathway that is reiteratively employed in embryos and adult organisms. We discuss the upstream signals and mechanisms that may establish differential competence for HHs in a range of different tissues. We argue that the changing competence for HH signalling provides a four-dimensional framework for the interpretation of the signal that is essential for the emergence of functional anatomy. A number of diseases-including several types of cancer-are caused by malfunctions of the HH pathway. A better understanding of what provides differential competence for this signal may reveal HH-related disease mechanisms and equip us with more specific tools to manipulate HH signalling in the clinic.

11.
Evodevo ; 5: 24, 2014.
Article En | MEDLINE | ID: mdl-25009737

Segmentation is a feature of the body plans of a number of diverse animal groupings, including the annelids, arthropods and chordates. However, it has been unclear whether or not these different manifestations of segmentation are independently derived or have a common origin. Central to this issue is whether or not there are common developmental mechanisms that establish segmentation and the evolutionary origins of these processes. A fruitful way to address this issue is to consider how segmentation in vertebrates is directed. During vertebrate development three different segmental systems are established: the somites, the rhombomeres and the pharyngeal arches. In each an iteration of parts along the long axis is established. However, it is clear that the formation of the somites, rhombomeres or pharyngeal arches have little in common, and as such there is no single segmentation process. These different segmental systems also have distinct evolutionary histories, thus highlighting the fact that segmentation can and does evolve independently at multiple points. We conclude that the term segmentation indicates nothing more than a morphological description and that it implies no mechanistic similarity. Thus it is probable that segmentation has arisen repeatedly during animal evolution.

12.
Proc Natl Acad Sci U S A ; 110(41): E3919-26, 2013 Oct 08.
Article En | MEDLINE | ID: mdl-24065827

During embryonic development, the presumptive GABAergic rostral thalamus (rTh) and glutamatergic caudal thalamus (cTh) are induced by Sonic hedgehog (Shh) signaling from the zona limitans intrathalamica (ZLI) at the rostral border of the thalamic primordium. We found that these inductions are limited to the neuroepithelium between the ZLI and the forebrain-midbrain boundary, suggesting a prepattern that limits thalamic competence. We hypothesized that this prepattern is established by the overlapping expression of two transcription factors: Iroquois-related homeobox gene 3 (Irx3) posterior to the ZLI, and paired box gene 6 (Pax6) anterior to the forebrain-midbrain boundary. Consistent with this assumption, we show that misexpression of Irx3 in the prethalamus or telencephalon results in ectopic induction of thalamic markers in response to Shh, that it functions as a transcriptional repressor in this context, and that antagonizing its function in the diencephalon attenuates thalamic specification. Similarly, misexpression of Pax6 in the midbrain together with Shh pathway activation results in ectopic induction of cTh markers in clusters of cells that fail to integrate into tectal layers and of atypical long-range projections, whereas antagonizing Pax6 function in the thalamus disrupts cTh formation. However, rTh markers are negatively regulated by Pax6, which itself is down-regulated by Shh from the ZLI in this area. Our results demonstrate that the combinatorial expression of Irx3 and Pax6 endows cells with the competence for cTh formation, whereas Shh-mediated down-regulation of Pax6 is required for rTh formation. Thus, thalamus induction and patterning depends both on a prepattern of Irx3 and Pax6 expression that establishes differential cellular competence and on Shh signaling from the ZLI organizer.


Avian Proteins/metabolism , Embryonic Induction/physiology , Eye Proteins/metabolism , GABAergic Neurons/metabolism , Hedgehog Proteins/metabolism , Homeodomain Proteins/metabolism , Paired Box Transcription Factors/metabolism , Repressor Proteins/metabolism , Thalamus/embryology , Transcription Factors/metabolism , Animals , Chick Embryo , Cloning, Molecular , DNA Primers/genetics , Electroporation , Fluorescent Antibody Technique , Glutamic Acid/metabolism , In Situ Hybridization , PAX6 Transcription Factor , Thalamus/cytology
13.
Annu Rev Neurosci ; 35: 347-67, 2012.
Article En | MEDLINE | ID: mdl-22462542

The foundation for the anatomical and functional complexity of the vertebrate central nervous system is laid during embryogenesis. After Spemann's organizer and its derivatives have endowed the neural plate with a coarse pattern along its anteroposterior and mediolateral axes, this basis is progressively refined by the activity of secondary organizers within the neuroepithelium that function by releasing diffusible signaling factors. Dorsoventral patterning is mediated by two organizer regions that extend along the dorsal and ventral midlines of the entire neuraxis, whereas anteroposterior patterning is controlled by several discrete organizers. Here we review how these secondary organizers are established and how they exert their signaling functions. Organizer signals come from a surprisingly limited set of signaling factor families, indicating that the competence of target cells to respond to those signals plays an important part in neural patterning.


Central Nervous System/growth & development , Morphogenesis/physiology , Organizers, Embryonic/physiology , Signal Transduction/physiology , Animals , Biological Evolution , Central Nervous System/metabolism , Gene Expression Regulation, Developmental/physiology , Models, Neurological , Neurogenesis/physiology , Organizers, Embryonic/metabolism
14.
J Neurotrauma ; 29(5): 828-42, 2012 Mar 20.
Article En | MEDLINE | ID: mdl-21895532

Interest in promoting regeneration of the injured nervous system has recently turned toward the use of endogenous stem cells. Elucidating cues involved in driving these precursor cells out of quiescence following injury, and the signals that drive them toward neuronal and glial lineages, will help to harness these cells for repair. Using a biomechanically validated in vitro organotypic stretch injury model, cortico-hippocampal slices from postnatal mice were cultured and a stretch injury equivalent to a severe traumatic brain injury (TBI) applied. In uninjured cortex, proliferative potential under in vitro conditions is virtually absent in older slices (equivalent postnatal day 15 compared to 8). However, following a severe stretch injury, this potential is restored in injured outer cortex. Using slices from mice expressing a fluorescent reporter on the human glial fibrillary acidic protein (GFAP) promoter, we show that GFAP+ cells account for the majority of proliferating neurospheres formed, and that these cells are likely to arise from the cortical parenchyma and not from the subventricular zone. Moreover, we provide evidence for a correlation between upregulation of sonic hedgehog signaling, a pathway known to regulate stem cell proliferation, and this restoration of regenerative potential following TBI. Our results indicate that a source of quiescent endogenous stem cells residing in the cortex and subcortical tissue proliferate in vitro following TBI. Moreover, these proliferating cells are multipotent and are derived mostly from GFAP-expressing cells. This raises the possibility of using this endogenous source of stem cells for repair following TBI.


Brain Injuries/physiopathology , Cerebral Cortex/cytology , Neural Stem Cells/cytology , Neurogenesis/physiology , Animals , Blotting, Western , Cell Differentiation/physiology , Cell Proliferation , Cerebral Cortex/metabolism , Flow Cytometry , Glial Fibrillary Acidic Protein/metabolism , Humans , Immunohistochemistry , In Situ Hybridization , Mice , Mice, Inbred C57BL , Neural Stem Cells/metabolism , Organ Culture Techniques , Real-Time Polymerase Chain Reaction
15.
Scientifica (Cairo) ; 2012: 475017, 2012.
Article En | MEDLINE | ID: mdl-24278699

The regionalisation of the nervous system begins early in embryogenesis, concomitant with the establishment of the anteroposterior (AP) and dorsoventral (DV) body axes. The molecular mechanisms that drive axis induction appear to be conserved throughout the animal kingdom and may be phylogenetically older than the emergence of bilateral symmetry. As a result of this process, groups of patterning genes that are equally well conserved are expressed at specific AP and DV coordinates of the embryo. In the emerging nervous system of vertebrate embryos, this initial pattern is refined by local signalling centres, secondary organisers, that regulate patterning, proliferation, and axonal pathfinding in adjacent neuroepithelium. The main secondary organisers for the AP neuraxis are the midbrain-hindbrain boundary, zona limitans intrathalamica, and anterior neural ridge and for the DV neuraxis the notochord, floor plate, and roof plate. A search for homologous secondary organisers in nonvertebrate lineages has led to controversy over their phylogenetic origins. Based on a recent study in hemichordates, it has been suggested that the AP secondary organisers evolved at the base of the deuterostome superphylum, earlier than previously thought. According to this view, the lack of signalling centres in some deuterostome lineages is likely to reflect a secondary loss due to adaptive processes. We propose that the relative evolutionary flexibility of secondary organisers has contributed to a broader morphological complexity of nervous systems in different clades.

16.
Development ; 138(17): 3745-57, 2011 Sep.
Article En | MEDLINE | ID: mdl-21795283

The midbrain-hindbrain interface gives rise to a boundary of particular importance in CNS development as it forms a local signalling centre, the proper functioning of which is essential for the formation of tectum and cerebellum. Positioning of the mid-hindbrain boundary (MHB) within the neuroepithelium is dependent on the interface of Otx2 and Gbx2 expression domains, yet in the absence of either or both of these genes, organiser genes are still expressed, suggesting that other, as yet unknown mechanisms are also involved in MHB establishment. Here, we present evidence for a role for Notch signalling in stabilising cell lineage restriction and regulating organiser gene expression at the MHB. Experimental interference with Notch signalling in the chick embryo disrupts MHB formation, including downregulation of the organiser signal Fgf8. Ectopic activation of Notch signalling in cells of the anterior hindbrain results in an exclusion of those cells from rhombomeres 1 and 2, and in a simultaneous clustering along the anterior and posterior boundaries of this area, suggesting that Notch signalling influences cell sorting. These cells ectopically express the boundary marker Fgf3. In agreement with a role for Notch signalling in cell sorting, anterior hindbrain cells with activated Notch signalling segregate from normal cells in an aggregation assay. Finally, misexpression of the Notch modulator Lfng or the Notch ligand Ser1 across the MHB leads to a shift in boundary position and loss of restriction of Fgf8 to the MHB. We propose that differential Notch signalling stabilises the MHB through regulating cell sorting and specifying boundary cell fate.


Mesencephalon/embryology , Mesencephalon/metabolism , Receptors, Notch/metabolism , Rhombencephalon/embryology , Rhombencephalon/metabolism , Animals , Chick Embryo , Immunohistochemistry , In Situ Hybridization , In Situ Nick-End Labeling , Models, Biological , Receptors, Notch/genetics , Signal Transduction/genetics , Signal Transduction/physiology
17.
Dev Biol ; 336(2): 280-92, 2009 Dec 15.
Article En | MEDLINE | ID: mdl-19836367

The epibranchial placodes generate the neurons of the geniculate, petrosal, and nodose cranial sensory ganglia. Previously, it has been shown that bone morphogenetic proteins (BMPs) are involved in the formation of these structures. However, it has been unclear as to whether BMP signalling has an ongoing function in directing the later development of the epibranchial placodes, and how this signalling is regulated. Here, we demonstrate that BMPs maintain placodal neurogenesis and that their activity is modulated by a member of the Cerberus/Dan family of BMP antagonists, Protein Related to Dan and Cerberus (PRDC). We find that Bmp4 is expressed in the epibranchial placodes while Bmp7 and PRDC are expressed in the pharyngeal pouches. The timing and regional expression of these three genes suggest that BMP7 is involved in inducing placode neurogenesis and BMP4 in maintaining it and that BMP activity is modulated by PRDC. To investigate this hypothesis, we have performed both gain- and loss- of-function experiments with PRDC and find that it can modulate the BMP signals that induce epibranchial neurogenesis: a gain of PRDC function results in a loss of Bmp4 and hence placode neurogenesis is inhibited; conversely, a loss of PRDC function induces ectopic Bmp4 and an expansion of placode neurogenesis. This modulation is therefore necessary for the number and positioning of the epibranchial neurons.


Bone Morphogenetic Proteins/metabolism , Proteins/physiology , Signal Transduction/physiology , Animals , Base Sequence , Chick Embryo , Cloning, Molecular , DNA Primers , In Situ Hybridization , Pharynx/embryology , Reverse Transcriptase Polymerase Chain Reaction , Xenopus laevis
18.
Neural Dev ; 4: 35, 2009 Sep 04.
Article En | MEDLINE | ID: mdl-19732418

BACKGROUND: Wnt signalling regulates multiple aspects of brain development in vertebrate embryos. A large number of Wnts are expressed in the embryonic forebrain; however, it is poorly understood which specific Wnt performs which function and how they interact. Wnts are able to activate different intracellular pathways, but which of these pathways become activated in different brain subdivisions also remains enigmatic. RESULTS: We have compiled the first comprehensive spatiotemporal atlas of Wnt pathway gene expression at critical stages of forebrain regionalisation in the chick embryo and found that most of these genes are expressed in strikingly dynamic and complex patterns. Several expression domains do not respect proposed compartment boundaries in the developing forebrain, suggesting that areal identities are more dynamic than previously thought. Using an in ovo electroporation approach, we show that Wnt4 expression in the thalamus is negatively regulated by Sonic hedgehog (Shh) signalling from the zona limitans intrathalamica (ZLI), a known organising centre of forebrain development. CONCLUSION: The forebrain is exposed to a multitude of Wnts and Wnt inhibitors that are expressed in a highly dynamic and complex fashion, precluding simple correlative conclusions about their respective functions or signalling mechanisms. In various biological systems, Wnts are antagonised by Shh signalling. By demonstrating that Wnt4 expression in the thalamus is repressed by Shh from the ZLI we reveal an additional level of interaction between these two pathways and provide an example for the cross-regulation between patterning centres during forebrain regionalisation.


Avian Proteins/metabolism , Gene Expression Regulation, Developmental , Prosencephalon/embryology , Prosencephalon/metabolism , Wnt Proteins/metabolism , Animals , Avian Proteins/genetics , Chick Embryo , Diencephalon/embryology , Diencephalon/metabolism , Electroporation , Extracellular Space/metabolism , Frizzled Receptors/genetics , Frizzled Receptors/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Hedgehog Proteins/metabolism , In Situ Hybridization , Intracellular Space/metabolism , Signal Transduction , Thalamus/embryology , Thalamus/metabolism , Time Factors , Wnt Proteins/genetics
19.
F1000 Biol Rep ; 1: 1, 2009 Jan 21.
Article En | MEDLINE | ID: mdl-20948677

A surprisingly small number of signalling pathways are used reiteratively during neural development, eliciting very different responses depending on the cellular context. Thus, the way a neural cell responds to a given signal is as important as the signal itself and this responsiveness, also called competence, changes with time. Here we describe recent advances in elucidating the signalling pathways that operate in brain development.

20.
Neural Dev ; 2: 25, 2007 Nov 13.
Article En | MEDLINE | ID: mdl-17999760

BACKGROUND: The developing vertebrate brain is patterned first by global signalling gradients that define crude anteroposterior and dorsoventral coordinates, and subsequently by local signalling centres (organisers) that refine cell fate assignment within pre-patterned regions. The interface between the prethalamus and the thalamus, the zona limitans intrathalamica (ZLI), is one such local signalling centre that is essential for the establishment of these major diencephalic subdivisions by secreting the signalling factor Sonic hedgehog. Various models for ZLI formation have been proposed, but a thorough understanding of how this important local organiser is established is lacking. RESULTS: Here, we describe tissue explant experiments in chick embryos aimed at characterising the roles of different forebrain areas in ZLI formation. We found that: the ZLI becomes specified unexpectedly early; flanking regions are required for its characteristic morphogenesis; ZLI induction can occur independently from ventral tissues; interaction between any prechordal and epichordal neuroepithelial tissue anterior to the midbrain-hindbrain boundary is able to generate a ZLI; and signals from the dorsal diencephalon antagonise ZLI formation. We further show that a localised source of retinoic acid in the dorsal diencephalon is a likely candidate to mediate this inhibitory signal. CONCLUSION: Our results are consistent with a model where planar, rather than vertical, signals position the ZLI at early stages of neural development and they implicate retinoic acid as a novel molecular cue that determines its dorsoventral extent.


Body Patterning/physiology , Diencephalon/embryology , Diencephalon/metabolism , Neurons/metabolism , Signal Transduction/physiology , Tretinoin/metabolism , Animals , Brain Tissue Transplantation/methods , Chick Embryo , Coturnix , Diencephalon/cytology , Gene Expression Regulation, Developmental/genetics , Gene Expression Regulation, Developmental/physiology , Growth Inhibitors/metabolism , Hedgehog Proteins/metabolism , Mesencephalon/cytology , Mesencephalon/embryology , Mesencephalon/metabolism , Neural Tube/cytology , Neural Tube/embryology , Neural Tube/metabolism , Neurons/cytology , Organ Culture Techniques , Rhombencephalon/cytology , Rhombencephalon/embryology , Rhombencephalon/metabolism , Stem Cells/cytology , Stem Cells/metabolism , Thalamus/cytology , Thalamus/embryology , Thalamus/metabolism , Transplantation Chimera
...