Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microbiol Spectr ; 11(6): e0278823, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-37948390

RESUMEN

IMPORTANCE: Antibiotic resistance and tolerance are substantial healthcare-related problems, hampering effective treatment of bacterial infections. Mutations in the phosphodiesterase GdpP, which degrades cyclic di-3', 5'-adenosine monophosphate (c-di-AMP), have recently been associated with resistance to beta-lactam antibiotics in clinical Staphylococcus aureus isolates. In this study, we show that high c-di-AMP levels decreased the cell size and increased the cell wall thickness in S. aureus mutant strains. As a consequence, an increase in resistance to cell wall targeting antibiotics, such as oxacillin and fosfomycin as well as in tolerance to ceftaroline, a cephalosporine used to treat methicillin-resistant S. aureus infections, was observed. These findings underline the importance of investigating the role of c-di-AMP in the development of tolerance and resistance to antibiotics in order to optimize treatment in the clinical setting.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Humanos , Staphylococcus aureus/metabolismo , Staphylococcus aureus Resistente a Meticilina/genética , Antibacterianos/farmacología , Antibacterianos/metabolismo , Infecciones Estafilocócicas/tratamiento farmacológico , Infecciones Estafilocócicas/metabolismo , Pared Celular/metabolismo , Resistencia a la Meticilina , Estrés Oxidativo , Proteínas Bacterianas/genética , Pruebas de Sensibilidad Microbiana
2.
J Biol Chem ; 299(12): 105376, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37866633

RESUMEN

Legionella pneumophila is an environmental bacterium, which replicates in amoeba but also in macrophages, and causes a life-threatening pneumonia called Legionnaires' disease. The opportunistic pathogen employs the α-hydroxy-ketone compound Legionella autoinducer-1 (LAI-1) for intraspecies and interkingdom signaling. LAI-1 is produced by the autoinducer synthase Legionella quorum sensing A (LqsA), but it is not known, how LAI-1 is released by the pathogen. Here, we use a Vibrio cholerae luminescence reporter strain and liquid chromatography-tandem mass spectrometry to detect bacteria-produced and synthetic LAI-1. Ectopic production of LqsA in Escherichia coli generated LAI-1, which partitions to outer membrane vesicles (OMVs) and increases OMV size. These E. coli OMVs trigger luminescence of the V. cholerae reporter strain and inhibit the migration of Dictyostelium discoideum amoeba. Overexpression of lqsA in L.pneumophila under the control of strong stationary phase promoters (PflaA or P6SRNA), but not under control of its endogenous promoter (PlqsA), produces LAI-1, which is detected in purified OMVs. These L. pneumophila OMVs trigger luminescence of the Vibrio reporter strain and inhibit D. discoideum migration. L. pneumophila OMVs are smaller upon overexpression of lqsA or upon addition of LAI-1 to growing bacteria, and therefore, LqsA affects OMV production. The overexpression of lqsA but not a catalytically inactive mutant promotes intracellular replication of L. pneumophila in macrophages, indicating that intracellularly produced LA1-1 modulates the interaction in favor of the pathogen. Taken together, we provide evidence that L. pneumophila LAI-1 is secreted through OMVs and promotes interbacterial communication and interactions with eukaryotic host cells.


Asunto(s)
Legionella pneumophila , Percepción de Quorum , Humanos , Proteínas Bacterianas/genética , Dictyostelium , Escherichia coli , Legionella , Legionella pneumophila/fisiología , Enfermedad de los Legionarios/microbiología
3.
PLoS Biol ; 21(8): e3002253, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37651408

RESUMEN

Salmonella Typhimurium elicits gut inflammation by the costly expression of HilD-controlled virulence factors. This inflammation alleviates colonization resistance (CR) mediated by the microbiota and thereby promotes pathogen blooms. However, the inflamed gut-milieu can also select for hilD mutants, which cannot elicit or maintain inflammation, therefore causing a loss of the pathogen's virulence. This raises the question of which conditions support the maintenance of virulence in S. Typhimurium. Indeed, it remains unclear why the wild-type hilD allele is dominant among natural isolates. Here, we show that microbiota transfer from uninfected or recovered hosts leads to rapid clearance of hilD mutants that feature attenuated virulence, and thereby contributes to the preservation of the virulent S. Typhimurium genotype. Using mouse models featuring a range of microbiota compositions and antibiotic- or inflammation-inflicted microbiota disruptions, we found that irreversible disruption of the microbiota leads to the accumulation of hilD mutants. In contrast, in models with a transient microbiota disruption, selection for hilD mutants was prevented by the regrowing microbiota community dominated by Lachnospirales and Oscillospirales. Strikingly, even after an irreversible microbiota disruption, microbiota transfer from uninfected donors prevented the rise of hilD mutants. Our results establish that robust S. Typhimurium gut colonization hinges on optimizing its manipulation of the host: A transient and tempered microbiota perturbation is favorable for the pathogen to both flourish in the inflamed gut and also minimize loss of virulence. Moreover, besides conferring CR, the microbiota may have the additional consequence of maintaining costly enteropathogen virulence mechanisms.


Asunto(s)
Microbiota , Salmonella typhimurium , Animales , Ratones , Virulencia/genética , Salmonella typhimurium/genética , Factores de Virulencia/genética , Inflamación
4.
Nat Commun ; 13(1): 5243, 2022 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-36068201

RESUMEN

Methanol is a liquid with high energy storage capacity that holds promise as an alternative substrate to replace sugars in the biotechnology industry. It can be produced from CO2 or methane and its use does not compete with food and animal feed production. However, there are currently only limited biotechnological options for the valorization of methanol, which hinders its widespread adoption. Here, we report the conversion of the industrial platform organism Escherichia coli into a synthetic methylotroph that assimilates methanol via the energy efficient ribulose monophosphate cycle. Methylotrophy is achieved after evolution of a methanol-dependent E. coli strain over 250 generations in continuous chemostat culture. We demonstrate growth on methanol and biomass formation exclusively from the one-carbon source by 13C isotopic tracer analysis. In line with computational modeling, the methylotrophic E. coli strain optimizes methanol oxidation by upregulation of an improved methanol dehydrogenase, increasing ribulose monophosphate cycle activity, channeling carbon flux through the Entner-Doudoroff pathway and downregulating tricarboxylic acid cycle enzymes. En route towards sustainable bioproduction processes, our work lays the foundation for the efficient utilization of methanol as the dominant carbon and energy resource.


Asunto(s)
Escherichia coli , Metanol , Carbono/metabolismo , Escherichia coli/genética , Ingeniería Metabólica , Metanol/metabolismo , Pentosas
5.
Nat Plants ; 7(5): 696-705, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-34007033

RESUMEN

Plants, like other multicellular lifeforms, are colonized by microorganisms. How plants respond to their microbiota is currently not well understood. We used a phylogenetically diverse set of 39 endogenous bacterial strains from Arabidopsis thaliana leaves to assess host transcriptional and metabolic adaptations to bacterial encounters. We identified a molecular response, which we termed the general non-self response (GNSR) that involves the expression of a core set of 24 genes. The GNSR genes are not only consistently induced by the presence of most strains, they also comprise the most differentially regulated genes across treatments and are predictive of a hierarchical transcriptional reprogramming beyond the GNSR. Using a complementary untargeted metabolomics approach we link the GNSR to the tryptophan-derived secondary metabolism, highlighting the importance of small molecules in plant-microbe interactions. We demonstrate that several of the GNSR genes are required for resistance against the bacterial pathogen Pseudomonas syringae. Our results suggest that the GNSR constitutes a defence adaptation strategy that is consistently elicited by diverse strains from various phyla, contributes to host protection and involves secondary metabolism.


Asunto(s)
Arabidopsis/inmunología , Arabidopsis/microbiología , Arabidopsis/fisiología , Bacterias/genética , Bacterias/inmunología , Regulación de la Expresión Génica de las Plantas , Genes de Plantas/inmunología , Genes de Plantas/fisiología , Metaboloma , Filogenia , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Inmunidad de la Planta/genética , Inmunidad de la Planta/fisiología , Metabolismo Secundario , Triptófano/metabolismo
6.
mBio ; 12(2)2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33785618

RESUMEN

When engaging in symbiosis with legume hosts, rhizobia are confronted with environmental changes, including nutrient availability and stress exposure. Genetic circuits allow responding to these environmental stimuli to optimize physiological adaptations during the switch from the free-living to the symbiotic life style. A pivotal regulatory system of the nitrogen-fixing soybean endosymbiont Bradyrhizobium diazoefficiens for efficient symbiosis is the general stress response (GSR), which relies on the alternative sigma factor σEcfG However, the GSR-controlled process required for symbiosis has not been identified. Here, we demonstrate that biosynthesis of trehalose is under GSR control, and mutants lacking the respective biosynthetic genes otsA and/or otsB phenocopy GSR-deficient mutants under symbiotic and selected free-living stress conditions. The role of trehalose as a cytoplasmic chemical chaperone and stress protectant can be functionally replaced in an otsA or otsB mutant by introducing heterologous genetic pathways for biosynthesis of the chemically unrelated compatible solutes glycine betaine and (hydroxy)ectoine. Alternatively, uptake of exogenously provided trehalose also restores efficient symbiosis and tolerance to hyperosmotic and hyperionic stress of otsA mutants. Hence, elevated cytoplasmic trehalose levels resulting from GSR-controlled biosynthesis are crucial for B. diazoefficiens cells to overcome adverse conditions during early stages of host infection and ensure synchronization with root nodule development.IMPORTANCE The Bradyrhizobium-soybean symbiosis is of great agricultural significance and serves as a model system for fundamental research in bacterium-plant interactions. While detailed molecular insight is available about mutual recognition and early nodule organogenesis, our understanding of the host-imposed conditions and the physiology of infecting rhizobia during the transition from a free-living state in the rhizosphere to endosymbiotic bacteroids is currently limited. In this study, we show that the requirement of the rhizobial general stress response (GSR) during host infection is attributable to GSR-controlled biosynthesis of trehalose. Specifically, trehalose is crucial for an efficient symbiosis by acting as a chemical chaperone to protect rhizobia from osmostress during host infection.


Asunto(s)
Bradyrhizobium/metabolismo , Glycine max/microbiología , Trehalosa/metabolismo , Aminoácidos Diaminos/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Betaína/metabolismo , Bradyrhizobium/genética , Presión Osmótica , Nodulación de la Raíz de la Planta , Nódulos de las Raíces de las Plantas/crecimiento & desarrollo , Nódulos de las Raíces de las Plantas/microbiología , Glycine max/crecimiento & desarrollo
7.
Nat Commun ; 11(1): 5403, 2020 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-33106470

RESUMEN

Methanol is a biotechnologically promising substitute for food and feed substrates since it can be produced renewably from electricity, water and CO2. Although progress has been made towards establishing Escherichia coli as a platform organism for methanol conversion via the energy efficient ribulose monophosphate (RuMP) cycle, engineering strains that rely solely on methanol as a carbon source remains challenging. Here, we apply flux balance analysis to comprehensively identify methanol-dependent strains with high potential for adaptive laboratory evolution. We further investigate two out of 1200 candidate strains, one with a deletion of fructose-1,6-bisphosphatase (fbp) and another with triosephosphate isomerase (tpiA) deleted. In contrast to previous reported methanol-dependent strains, both feature a complete RuMP cycle and incorporate methanol to a high degree, with up to 31 and 99% fractional incorporation into RuMP cycle metabolites. These strains represent ideal starting points for evolution towards a fully methylotrophic lifestyle.


Asunto(s)
Escherichia coli/metabolismo , Metanol/metabolismo , Ribulosafosfatos/metabolismo , Proteínas Bacterianas , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Fructosa-Bifosfatasa/genética , Fructosa-Bifosfatasa/metabolismo , Ingeniería Metabólica , Triosa-Fosfato Isomerasa/genética , Triosa-Fosfato Isomerasa/metabolismo
8.
PLoS Comput Biol ; 16(4): e1007799, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32287281

RESUMEN

13C-metabolic flux analysis (13C-MFA) allows metabolic fluxes to be quantified in living organisms and is a major tool in biotechnology and systems biology. Current 13C-MFA approaches model label propagation starting from the extracellular 13C-labeled nutrient(s), which limits their applicability to the analysis of pathways close to this metabolic entry point. Here, we propose a new approach to quantify fluxes through any metabolic subnetwork of interest by modeling label propagation directly from the metabolic precursor(s) of this subnetwork. The flux calculations are thus purely based on information from within the subnetwork of interest, and no additional knowledge about the surrounding network (such as atom transitions in upstream reactions or the labeling of the extracellular nutrient) is required. This approach, termed ScalaFlux for SCALAble metabolic FLUX analysis, can be scaled up from individual reactions to pathways to sets of pathways. ScalaFlux has several benefits compared with current 13C-MFA approaches: greater network coverage, lower data requirements, independence from cell physiology, robustness to gaps in data and network information, better computational efficiency, applicability to rich media, and enhanced flux identifiability. We validated ScalaFlux using a theoretical network and simulated data. We also used the approach to quantify fluxes through the prenyl pyrophosphate pathway of Saccharomyces cerevisiae mutants engineered to produce phytoene, using a dataset for which fluxes could not be calculated using existing approaches. A broad range of metabolic systems can be targeted with minimal cost and effort, making ScalaFlux a valuable tool for the analysis of metabolic fluxes.


Asunto(s)
Análisis de Flujos Metabólicos/métodos , Redes y Vías Metabólicas/fisiología , Modelos Biológicos , Isótopos de Carbono/análisis , Isótopos de Carbono/metabolismo , Ingeniería Metabólica , Fosfatos de Poliisoprenilo/metabolismo , Saccharomyces cerevisiae/metabolismo , Biología de Sistemas , Terpenos/metabolismo
9.
Nat Metab ; 2(2): 153-166, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32090198

RESUMEN

Cell cycle progression requires the coordination of cell growth, chromosome replication, and division. Consequently, a functional cell cycle must be coupled with metabolism. However, direct measurements of metabolome dynamics remained scarce, in particular in bacteria. Here, we describe an untargeted metabolomics approach with synchronized Caulobacter crescentus cells to monitor the relative abundance changes of ~400 putative metabolites as a function of the cell cycle. While the majority of metabolite pools remains homeostatic, ~14% respond to cell cycle progression. In particular, sulfur metabolism is redirected during the G1-S transition, and glutathione levels periodically change over the cell cycle with a peak in late S phase. A lack of glutathione perturbs cell size by uncoupling cell growth and division through dysregulation of KefB, a K+/H+ antiporter. Overall, we here describe the impact of the C. crescentus cell cycle progression on metabolism, and in turn relate glutathione and potassium homeostasis to timely cell division.


Asunto(s)
Caulobacter crescentus/metabolismo , Ciclo Celular , Glutatión/metabolismo , Metabolómica , Caulobacter crescentus/citología , División Celular , Cromatografía Liquida , Homeostasis , Espectrometría de Masas , Potasio/metabolismo
10.
J Biol Chem ; 293(44): 17200-17207, 2018 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-30217823

RESUMEN

The enoyl-thioester reductase InhA catalyzes an essential step in fatty acid biosynthesis of Mycobacterium tuberculosis and is a key target of antituberculosis drugs to combat multidrug-resistant M. tuberculosis strains. This has prompted intense interest in the mechanism and intermediates of the InhA reaction. Here, using enzyme mutagenesis, NMR, stopped-flow spectroscopy, and LC-MS, we found that the NADH cofactor and the CoA thioester substrate form a covalent adduct during the InhA catalytic cycle. We used the isolated adduct as a molecular probe to directly access the second half-reaction of the catalytic cycle of InhA (i.e. the proton transfer), independently of the first half-reaction (i.e. the initial hydride transfer) and to assign functions to two conserved active-site residues, Tyr-158 and Thr-196. We found that Tyr-158 is required for the stereospecificity of protonation and that Thr-196 is partially involved in hydride transfer and protonation. The natural tendency of InhA to form a covalent C2-ene adduct calls for a careful reconsideration of the enzyme's reaction mechanism. It also provides the basis for the development of effective tools to study, manipulate, and inhibit the catalytic cycle of InhA and related enzymes of the short-chain dehydrogenase/reductase (SDR) superfamily. In summary, our work has uncovered the formation of a covalent adduct during the InhA catalytic cycle and identified critical residues required for catalysis, providing further insights into the InhA reaction mechanism important for the development of antituberculosis drugs.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Mycobacterium tuberculosis/enzimología , Oxidorreductasas/química , Oxidorreductasas/metabolismo , Secuencias de Aminoácidos , Proteínas Bacterianas/genética , Biocatálisis , Dominio Catalítico , Modelos Moleculares , Mycobacterium tuberculosis/química , Mycobacterium tuberculosis/genética , Oxidorreductasas/genética , Conformación Proteica
11.
Nat Commun ; 9(1): 1508, 2018 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-29666370

RESUMEN

Methanol represents an attractive substrate for biotechnological applications. Utilization of reduced one-carbon compounds for growth is currently limited to methylotrophic organisms, and engineering synthetic methylotrophy remains a major challenge. Here we apply an in silico-guided multiple knockout approach to engineer a methanol-essential Escherichia coli strain, which contains the ribulose monophosphate cycle for methanol assimilation. Methanol conversion to biomass was stoichiometrically coupled to the metabolization of gluconate and the designed strain was subjected to laboratory evolution experiments. Evolved strains incorporate up to 24% methanol into core metabolites under a co-consumption regime and utilize methanol at rates comparable to natural methylotrophs. Genome sequencing reveals mutations in genes coding for glutathione-dependent formaldehyde oxidation (frmA), NAD(H) homeostasis/biosynthesis (nadR), phosphopentomutase (deoB), and gluconate metabolism (gntR). This study demonstrates a successful metabolic re-routing linked to a heterologous pathway to achieve methanol-dependent growth and represents a crucial step in generating a fully synthetic methylotrophic organism.


Asunto(s)
Proteínas Bacterianas/genética , Escherichia coli/fisiología , Ingeniería Metabólica , Redes y Vías Metabólicas/genética , Metanol/metabolismo , Proteínas Bacterianas/metabolismo , Simulación por Computador , Técnicas de Inactivación de Genes , Genoma Bacteriano/genética , Gluconatos/metabolismo
12.
Metab Eng ; 47: 423-433, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29625224

RESUMEN

Organisms are either heterotrophic or autotrophic, meaning that they cover their carbon requirements by assimilating organic compounds or by fixing inorganic carbon dioxide (CO2). The conversion of a heterotrophic organism into an autotrophic one by metabolic engineering is a long-standing goal in synthetic biology and biotechnology, because it ultimately allows for the production of value-added compounds from CO2. The heterotrophic Alphaproteobacterium Methylobacterium extorquens AM1 is a platform organism for a future C1-based bioeconomy. Here we show that M. extorquens AM1 provides unique advantages for establishing synthetic autotrophy, because energy metabolism and biomass formation can be effectively separated from each other in the organism. We designed and realized an engineered strain of M. extorquens AM1 that can use the C1 compound methanol for energy acquisition and forms biomass from CO2 by implementation of a heterologous Calvin-Benson-Bassham (CBB) cycle. We demonstrate that the heterologous CBB cycle is active, confers a distinct phenotype, and strongly increases viability of the engineered strain. Metabolic 13C-tracer analysis demonstrates the functional operation of the heterologous CBB cycle in M. extorquens AM1 and comparative proteomics of the engineered strain show that the host cell reacts to the implementation of the CBB cycle in a plastic way. While the heterologous CBB cycle is not able to support full autotrophic growth of M. extorquens AM1, our study represents a further advancement in the design and realization of synthetic autotrophic organisms.


Asunto(s)
Dióxido de Carbono/metabolismo , Ingeniería Metabólica , Methylobacterium extorquens , Fotosíntesis , Methylobacterium extorquens/genética , Methylobacterium extorquens/metabolismo
13.
Anal Chem ; 89(21): 11583-11591, 2017 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-29028328

RESUMEN

Amyloid aggregates are associated with several debilitating diseases, and there are numerous efforts to develop small molecule treatments against these diseases. One challenge associated with these efforts is determining protein binding site information for potential therapeutics because amyloid-forming proteins rapidly form oligomers and aggregates, making traditional protein structural analysis techniques challenging. Using ß-2-microglobulin (ß2m) as a model amyloid-forming protein along with two recently identified small molecule amyloid inhibitors (i.e., rifamycin SV and doxycycline), we demonstrate that covalent labeling and mass spectrometry (MS) can be used to map small-molecule binding sites for a rapidly aggregating protein. Specifically, three different covalent labeling reagents, namely diethylpyrocarbonate, 2,3-butanedione, and the reagent pair EDC/GEE, are used together to pinpoint the binding sites of rifamycin SV, doxycycline, and another molecule, suramin, which binds but does not inhibit Cu(II)-induced ß2m amyloid formation. The labeling results reveal binding sites that are consistent with the known effects of these molecules on ß2m amyloid formation and are in general agreement with molecular docking results. We expect that this combined covalent labeling approach will be applicable to other protein/small molecule systems that are difficult to study by traditional means.


Asunto(s)
Amiloide/química , Amiloide/metabolismo , Espectrometría de Masas , Simulación del Acoplamiento Molecular , Agregado de Proteínas/efectos de los fármacos , Sitios de Unión , Doxiciclina/metabolismo , Doxiciclina/farmacología , Humanos , Unión Proteica , Conformación Proteica , Proteolisis , Rifamicinas/metabolismo , Rifamicinas/farmacología , Coloración y Etiquetado , Suramina/metabolismo , Suramina/farmacología , Microglobulina beta-2/química , Microglobulina beta-2/metabolismo
14.
Nat Microbiol ; 2: 17073, 2017 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-28504670

RESUMEN

Coenzymes are vital for cellular metabolism and act on the full spectrum of enzymatic reactions. Intrinsic chemical reactivity, enzyme promiscuity and high flux through their catalytic cycles make coenzymes prone to damage. To counteract such compromising factors and ensure stable levels of functional coenzymes, cells use a complex interplay between de novo synthesis, salvage, repair and degradation. However, the relative contribution of these factors is currently unknown, as is the overall stability of coenzymes in the cell. Here, we use dynamic 13C-labelling experiments to determine the half-life of major coenzymes of Escherichia coli. We find that coenzymes such as pyridoxal 5-phosphate, flavins, nicotinamide adenine dinucleotide (phosphate) and coenzyme A are remarkably stable in vivo and allow biosynthesis close to the minimal necessary rate. In consequence, they are essentially produced to compensate for dilution by growth and passed on over generations of cells. Exceptions are antioxidants, which are short-lived, suggesting an inherent requirement for increased renewal. Although the growth-driven turnover of stable coenzymes is apparently subject to highly efficient end-product homeostasis, we exemplify that coenzyme pools are propagated in excess in relation to actual growth requirements. Additional testing of Bacillus subtilis and Saccharomyces cerevisiae suggests that coenzyme longevity is a conserved feature in biology.


Asunto(s)
Coenzimas/metabolismo , Escherichia coli/metabolismo , Bacillus subtilis/metabolismo , Isótopos de Carbono/metabolismo , Semivida , Marcaje Isotópico , Saccharomyces cerevisiae/metabolismo , Coloración y Etiquetado
15.
Anal Chem ; 89(9): 5017-5023, 2017 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-28363018

RESUMEN

Single-cell metabolite analysis provides valuable information on cellular function and response to external stimuli. While recent advances in mass spectrometry reached the sensitivity required to investigate metabolites in single cells, current methods commonly isolate and sacrifice cells, inflicting a perturbed state and preventing complementary analyses. Here, we propose a two-step approach that combines nondestructive and quantitative withdrawal of intracellular fluid with subpicoliter resolution using fluidic force microscopy, followed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The developed method enabled the detection and identification of 20 metabolites recovered from the cytoplasm of individual HeLa cells. The approach was further validated in 13C-glucose feeding experiments, which showed incorporation of labeled carbon atoms into different metabolites. Metabolite sampling, followed by mass spectrometry measurements, enabled the preservation of the physiological context and the viability of the analyzed cell, providing opportunities for complementary analyses of the cell before, during, and after metabolite analysis.


Asunto(s)
Metaboloma , Metabolómica/métodos , Microscopía/métodos , Análisis de la Célula Individual/métodos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Isótopos de Carbono , Células HeLa , Humanos
16.
J Biol Chem ; 291(17): 9042-51, 2016 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-26895963

RESUMEN

Methylobacterium extorquens AM1 uses dedicated cofactors for one-carbon unit conversion. Based on the sequence identities of enzymes and activity determinations, a methanofuran analog was proposed to be involved in formaldehyde oxidation in Alphaproteobacteria. Here, we report the structure of the cofactor, which we termed methylofuran. Using an in vitro enzyme assay and LC-MS, methylofuran was identified in cell extracts and further purified. From the exact mass and MS-MS fragmentation pattern, the structure of the cofactor was determined to consist of a polyglutamic acid side chain linked to a core structure similar to the one present in archaeal methanofuran variants. NMR analyses showed that the core structure contains a furan ring. However, instead of the tyramine moiety that is present in methanofuran cofactors, a tyrosine residue is present in methylofuran, which was further confirmed by MS through the incorporation of a (13)C-labeled precursor. Methylofuran was present as a mixture of different species with varying numbers of glutamic acid residues in the side chain ranging from 12 to 24. Notably, the glutamic acid residues were not solely γ-linked, as is the case for all known methanofurans, but were identified by NMR as a mixture of α- and γ-linked amino acids. Considering the unusual peptide chain, the elucidation of the structure presented here sets the basis for further research on this cofactor, which is probably the largest cofactor known so far.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Portadoras/química , Methylobacterium extorquens/química , Proteínas Bacterianas/genética , Proteínas Portadoras/genética , Methylobacterium extorquens/genética , Resonancia Magnética Nuclear Biomolecular , Estructura Terciaria de Proteína
17.
ISME J ; 10(3): 632-43, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26305156

RESUMEN

The phyllosphere, which is defined as the parts of terrestrial plants above the ground, is a large habitat for different microorganisms that show a high extent of adaption to their environment. A number of hypotheses were generated by culture-independent functional genomics studies to explain the competitiveness of specialized bacteria in the phyllosphere. In contrast, in situ data at the metabolome level as a function of bacterial colonization are lacking. Here, we aimed to obtain new insights into the metabolic interplay between host and epiphytes upon colonization of Arabidopsis thaliana leaves in a controlled laboratory setting using environmental metabolomics approaches. Quantitative nuclear magnetic resonance (NMR) and imaging high-resolution mass spectrometry (IMS) methods were used to identify Arabidopsis leaf surface compounds and their possible involvement in the epiphytic lifestyle by relative changes in compound pools. The dominant carbohydrates on the leaf surfaces were sucrose, fructose and glucose. These sugars were significantly and specifically altered after epiphytic leaf colonization by the organoheterotroph Sphingomonas melonis or the phytopathogen Pseudomonas syringae pv. tomato, but only to a minor extent by the methylotroph Methylobacterium extorquens. In addition to carbohydrates, IMS revealed surprising alterations in arginine metabolism and phytoalexin biosynthesis that were dependent on the presence of bacteria, which might reflect the consequences of bacterial activity and the recognition of not only pathogens but also commensals by the plant. These results highlight the power of environmental metabolomics to aid in elucidating the molecular basis underlying plant-epiphyte interactions in situ.


Asunto(s)
Arabidopsis/microbiología , Pseudomonas syringae/metabolismo , Sphingomonas/metabolismo , Metabolismo de los Hidratos de Carbono , Ecosistema , Hojas de la Planta/microbiología , Pseudomonas syringae/crecimiento & desarrollo , Sphingomonas/crecimiento & desarrollo
18.
Anal Chem ; 87(19): 9679-86, 2015 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-26366644

RESUMEN

Dynamic isotope labeling data provides crucial information about the operation of metabolic pathways and are commonly generated via liquid chromatography-mass spectrometry (LC-MS). Metabolome-wide analysis is challenging as it requires grouping of metabolite features over different samples. We developed DynaMet for fully automated investigations of isotope labeling experiments from LC-high-resolution MS raw data. DynaMet enables untargeted extraction of metabolite labeling profiles and provides integrated tools for expressive data visualization. To validate DynaMet we first used time course labeling data of the model strain Bacillus methanolicus from (13)C methanol resulting in complex spectra in multicarbon compounds. Analysis of two biological replicates revealed high robustness and reproducibility of the pipeline. In total, DynaMet extracted 386 features showing dynamic labeling within 10 min. Of these features, 357 could be fitted by implemented kinetic models. Feature identification against KEGG database resulted in 215 matches covering multiple pathways of core metabolism and major biosynthetic routes. Moreover, we performed time course labeling experiment with Escherichia coli on uniformly labeled (13)C glucose resulting in a comparable number of detected features with labeling profiles of high quality. The distinct labeling patterns of common central metabolites generated from both model bacteria can readily be explained by one versus multicarbon compound metabolism. DynaMet is freely available as an extension package for Python based eMZed2, an open source framework built for rapid development of LC-MS data analysis workflows.


Asunto(s)
Automatización , Glucosa/análisis , Marcaje Isotópico , Metanol/análisis , Bacillus/metabolismo , Isótopos de Carbono , Cromatografía Liquida , Bases de Datos Factuales , Escherichia coli/metabolismo , Glucosa/metabolismo , Espectrometría de Masas , Metabolómica , Metanol/metabolismo , Reproducibilidad de los Resultados
19.
Angew Chem Int Ed Engl ; 54(45): 13457-61, 2015 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-26383129

RESUMEN

Carboxylating enoyl-thioester reductases (ECRs) are a recently discovered class of enzymes. They catalyze the highly efficient addition of CO2 to the double bond of α,ß-unsaturated CoA-thioesters and serve two biological functions. In primary metabolism of many bacteria they produce ethylmalonyl-CoA during assimilation of the central metabolite acetyl-CoA. In secondary metabolism they provide distinct α-carboxyl-acyl-thioesters to vary the backbone of numerous polyketide natural products. Different ECRs were systematically assessed with a diverse library of potential substrates. We identified three active site residues that distinguish ECRs restricted to C4 and C5-enoyl-CoAs from highly promiscuous ECRs and successfully engineered a selected ECR as proof-of-principle. This study defines the molecular basis of ECR reactivity, allowing for predicting and manipulating a key reaction in natural product diversification.


Asunto(s)
Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Policétidos/metabolismo , Ingeniería de Proteínas , Modelos Moleculares , Estructura Molecular , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/química , Policétidos/química
20.
Mol Microbiol ; 98(6): 1089-100, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26303953

RESUMEN

Bacillus methanolicus MGA3 is a model facultative methylotroph of interest for fundamental research and biotechnological applications. Previous research uncovered a number of pathways potentially involved in one-carbon substrate utilization. Here, we applied dynamic (13) C labeling to elucidate which of these pathways operate during growth on methanol and to uncover potentially new ones. B. methanolicus MGA3 uses the assimilatory and dissimilatory ribulose monophosphate (RuMP) cycles for conversion of the central but toxic intermediate formaldehyde. Additionally, the operation of two cofactor-dependent formaldehyde oxidation pathways with distinct roles was revealed. One is dependent on tri- and tetraglutamylated tetrahydrofolate (THF) and is involved in formaldehyde oxidation during growth on methanol. A second pathway was discovered that is dependent on bacillithiol, a thiol cofactor present also in other Bacilli where it is known to function in redox-homeostasis. We show that bacillithiol-dependent formaldehyde oxidation is activated upon an upshift in formaldehyde induced by a substrate switch from mannitol to methanol. The genes and the corresponding enzymes involved in the biosynthesis of bacillithiol were identified by heterologous production of bacillithiol in Escherichia coli. The presented results indicate metabolic plasticity of the methylotroph allowing acclimation to fluctuating intracellular formaldehyde concentrations.


Asunto(s)
Bacillus/genética , Bacillus/metabolismo , Cisteína/análogos & derivados , Formaldehído/metabolismo , Glucosamina/análogos & derivados , Redes y Vías Metabólicas , Bacillus/crecimiento & desarrollo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Isótopos de Carbono , Cisteína/biosíntesis , Cisteína/genética , Cisteína/metabolismo , Escherichia coli/genética , Formaldehído/efectos adversos , Glucosamina/biosíntesis , Glucosamina/genética , Glucosamina/metabolismo , Manitol/metabolismo , Redes y Vías Metabólicas/genética , Metanol/metabolismo , Pentosas/metabolismo , Estrés Fisiológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...