Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chembiochem ; : e202400478, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39022855

RESUMEN

Similar to ubiquitin, the ubiquitin-like protein NEDD8 is not only conjugated to other proteins but is itself subject to posttranslational modifications including lysine acetylation. Yet, compared to ubiquitin, only little is known about the biochemical and structural consequences of site-specific NEDD8 acetylation. Here, we generated site-specifically mono-acetylated NEDD8 variants for each known acetylation site by genetic code expansion. We show that, in particular, acetylation of K11 has a negative impact on the usage of NEDD8 by the NEDD8-conjugating enzymes UBE2M and UBE2F and that this is likely due to electrostatic and steric effects resulting in conformational changes of NEDD8. Finally, we provide evidence that p300 acts as a position-specific NEDD8 acetyltransferase.

2.
Nat Commun ; 13(1): 5435, 2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-36114200

RESUMEN

Covalent attachment of ubiquitin (Ub) to proteins is a highly versatile posttranslational modification. Moreover, Ub is not only a modifier but itself is modified by phosphorylation and lysine acetylation. However, the functional consequences of Ub acetylation are poorly understood. By generation and comprehensive characterization of all seven possible mono-acetylated Ub variants, we show that each acetylation site has a particular impact on Ub structure. This is reflected in selective usage of the acetylated variants by different E3 ligases and overlapping but distinct interactomes, linking different acetylated variants to different cellular pathways. Notably, not only electrostatic but also steric effects contribute to acetylation-induced changes in Ub structure and, thus, function. Finally, we provide evidence that p300 acts as a position-specific Ub acetyltransferase and HDAC6 as a general Ub deacetylase. Our findings provide intimate insights into the structural and functional consequences of Ub acetylation and highlight the general importance of Ub acetylation.


Asunto(s)
Lisina , Ubiquitina , Acetilación , Acetiltransferasas/metabolismo , Lisina/metabolismo , Procesamiento Proteico-Postraduccional , Electricidad Estática , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
3.
Cell Rep ; 39(9): 110879, 2022 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-35649362

RESUMEN

The MDM2 oncoprotein antagonizes the tumor suppressor p53 by physical interaction and ubiquitination. However, it also sustains the progression of DNA replication forks, even in the absence of functional p53. Here, we show that MDM2 binds, inhibits, ubiquitinates, and destabilizes poly(ADP-ribose) polymerase 1 (PARP1). When cellular MDM2 levels are increased, this leads to accelerated progression of DNA replication forks, much like pharmacological inhibition of PARP1. Conversely, overexpressed PARP1 restores normal fork progression despite elevated MDM2. Strikingly, MDM2 profoundly reduces the frequency of fork reversal, revealed as four-way junctions through electron microscopy. Depletion of RECQ1 or the primase/polymerase (PRIMPOL) reverses the MDM2-mediated acceleration of the nascent DNA elongation rate. MDM2 also increases the occurrence of micronuclei, and it exacerbates camptothecin-induced cell death. In conclusion, high MDM2 levels phenocopy PARP inhibition in modulation of fork restart, representing a potential vulnerability of cancer cells.


Asunto(s)
Replicación del ADN , Proteína p53 Supresora de Tumor , ADN/genética , Daño del ADN , ADN Primasa/metabolismo , Proteína p53 Supresora de Tumor/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA