Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
1.
Int J Biol Macromol ; : 133605, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38971285

RESUMEN

The demand for glucose-sensing devices has increased along with the increasing diabetic population. Here, we aimed to construct a system with a glucose oxidase (GOx)-integrated Cu-nanoflower (Cu-NF) as the underlying electrode. This novel system was successfully developed by creating a cross-linked GOx within a Cu-NF matrix, forming a c-GOx@Cu-NF-coated film on a carbon screen-printed electrode (CSPE). A comparison of the stabilities of the cross-linking methods demonstrated enhanced durability, with an activity level of >88 % maintained after approximately 35 days of storage in room temperature buffer. Regarding the ability of the c-GOx@Cu-NF modified CSPE to detect glucose via electrochemical methods, the redox potential gap (ΔE) and peak current increased in the presence of GOx. In comparison to that of glucose, the sensitivity of c-GOx@Cu-NF was approximately 8 times greater than that of GOx@Cu-NF, with a detection limit of 0.649 µM and a linear range of 5-500 µM. It sustained an average relative activity of 80 % over 20 days. After 10 cycles of repeated use, the activity remained above 75 %. In terms of evaluating the electrode's specificity for glucose, the detection rate for individual similar substances was approximately 1 %. The introduction of a crosslinking strategy to Cu-NF, leading to enhanced mechanical stability and conductivity, improved the detection capability. Furthermore, this approach led to increased long-term storage stability and reusability, allowing for specific glucose detection. To our knowledge, this report represents the first demonstration of a c-GOx@Cu-NF system for integrating electrochemical biosensing devices into digital healthcare pathways, offering enhanced sensing accuracy and mechanical stability.

2.
Nat Commun ; 15(1): 2983, 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38582860

RESUMEN

Akkermansia muciniphila has received great attention because of its beneficial roles in gut health by regulating gut immunity, promoting intestinal epithelial development, and improving barrier integrity. However, A. muciniphila-derived functional molecules regulating gut health are not well understood. Microbiome-secreted proteins act as key arbitrators of host-microbiome crosstalk through interactions with host cells in the gut and are important for understanding host-microbiome relationships. Herein, we report the biological function of Amuc_1409, a previously uncharacterised A. muciniphila-secreted protein. Amuc_1409 increased intestinal stem cell (ISC) proliferation and regeneration in ex vivo intestinal organoids and in vivo models of radiation- or chemotherapeutic drug-induced intestinal injury and natural aging with male mice. Mechanistically, Amuc_1409 promoted E-cadherin/ß-catenin complex dissociation via interaction with E-cadherin, resulting in the activation of Wnt/ß-catenin signaling. Our results demonstrate that Amuc_1409 plays a crucial role in intestinal homeostasis by regulating ISC activity in an E-cadherin-dependent manner and is a promising biomolecule for improving and maintaining gut health.


Asunto(s)
Verrucomicrobia , beta Catenina , Masculino , Ratones , Animales , beta Catenina/metabolismo , Verrucomicrobia/metabolismo , Intestinos , Cadherinas/metabolismo , Akkermansia
3.
Life Sci ; 339: 122413, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38219919

RESUMEN

AIMS: The gut microbiota is increasingly recognised as a pivotal regulator of immune system homeostasis and brain health. Recent research has implicated the gut microbiota in age-related cognitive impairment and dementia. Agathobaculum butyriciproducens SR79 T (SR79), which was identified in the human gut, has been reported to be beneficial in addressing cognitive deficits and pathophysiologies in a mouse model of Alzheimer's disease. However, it remains unknown whether SR79 affects age-dependent cognitive impairment. MAIN METHOD: To explore the effects of SR79 on cognitive function during ageing, we administered SR79 to aged mice. Ageing-associated behavioural alterations were examined using the open field test (OFT), tail suspension test (TST), novel object recognition test (NORT), Y-maze alternation test (Y-maze), and Morris water maze test (MWM). We investigated the mechanisms of action in the gut and brain using molecular and histological analyses. KEY FINDINGS: Administration of SR79 improved age-related cognitive impairment without altering general locomotor activity or depressive behaviour in aged mice. Furthermore, SR79 increased mature dendritic spines in the pyramidal cells of layer III and phosphorylation of CaMKIIα in the cortex of aged mice. Age-related activation of astrocytes in the cortex of layers III-V of the aged brain was reduced following SR79 administration. Additionally, SR79 markedly increased IL-10 production and Foxp3 and Muc2 mRNA expression in the colons of aged mice. SIGNIFICANCE: These findings suggest that treatment with SR79 may be a beneficial microbial-based approach for enhancing cognitive function during ageing.


Asunto(s)
Clostridiales , Trastornos del Conocimiento , Disfunción Cognitiva , Ratones , Humanos , Animales , Anciano , Trastornos del Conocimiento/metabolismo , Encéfalo/metabolismo , Envejecimiento/metabolismo
4.
Biosens Bioelectron ; 246: 115843, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38006700

RESUMEN

Aptamers are a versatile class of receptors with a high affinity and selectivity for specific targets. Although their ability to recognize individual targets has been extensively studied, some scenarios require the development of receptors capable of identifying all target groups. This study investigated the use of aptamers to achieve the broad-spectrum recognition of groups instead of individual targets. Aptamers were screened for selectively distinct groups of Cronobacter species associated with foodborne diseases. Seven Cronobacter spp. were divided into Group A (C. sakazakii, C. malonaticus, C. turicensis, and C. muytjensii) and Group B (C. dublinensis, C. condimenti, and C. universalis). Aptamers with exclusive selectivity for each group were identified, allowing binding to the species within their designated group while excluding those from the other group. The screened aptamers demonstrated reliable affinity and specificity with dissociation constants ranging from 1.3 to 399.7 nM for Group A and 4.0-24.5 nM for Group B. These aptamers have also been successfully employed as receptors in an electrochemical biosensor platform, enabling the selective detection of each group based on the corresponding aptamer (limit of detection was 7.8 and 3.2 CFU for Group A and Group B, respectively). The electrochemical sensor effectively detected the extent of infection in each group in powdered infant formula samples. This study highlights the successful screening and application of group-selective aptamers as sensing receptors, emphasizing their potential for diverse applications in different fields such as food safety, environmental monitoring, and clinical diagnostics, where the selective biosensing of target groups is crucial.


Asunto(s)
Técnicas Biosensibles , Cronobacter sakazakii , Cronobacter , Humanos , Lactante , Oligonucleótidos , Fórmulas Infantiles
5.
Cell Host Microbe ; 31(6): 1021-1037.e10, 2023 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-37269833

RESUMEN

Commensal bacteria are critically involved in the establishment of tolerance against inflammatory challenges, the molecular mechanisms of which are just being uncovered. All kingdoms of life produce aminoacyl-tRNA synthetases (ARSs). Thus far, the non-translational roles of ARSs have largely been reported in eukaryotes. Here, we report that the threonyl-tRNA synthetase (AmTARS) of the gut-associated bacterium Akkermansia muciniphila is secreted and functions to monitor and modulate immune homeostasis. Secreted AmTARS triggers M2 macrophage polarization and orchestrates the production of anti-inflammatory IL-10 via its unique, evolutionary-acquired regions, which mediates specific interactions with TLR2. This interaction activates the MAPK and PI3K/AKT signaling pathways, which converge on CREB, leading to an efficient production of IL-10 and suppression of the central inflammatory mediator NF-κB. AmTARS restores IL-10-positive macrophages, increases IL-10 levels in the serum, and attenuates the pathological effects in colitis mice. Thus, commensal tRNA synthetases can act as intrinsic mediators that maintain homeostasis.


Asunto(s)
Treonina-ARNt Ligasa , Animales , Ratones , Treonina-ARNt Ligasa/metabolismo , Interleucina-10/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Verrucomicrobia/metabolismo , Homeostasis , ARN de Transferencia/metabolismo
6.
Anal Chim Acta ; 1249: 340935, 2023 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-36868770

RESUMEN

Cronobacter spp. are opportunistic foodborne pathogens typically detected in contaminated powdered infant formula (PIF). Thus, the rapid detection and control of Cronobacter spp. are required to prevent outbreaks, necessitating the development of specific aptamers. In this study, we isolated aptamers specific to all seven species of Cronobacter (C. sakazakii, C. malonaticus, C. turicensis, C. muytjensii, C. dublinensis, C. condimenti, and C. universalis) using a newly proposed sequential partitioning method. This method avoids the repeated enrichment steps, reducing the total aptamer selection time compared with the conventional systematic evolution of ligands by the exponential enrichment (SELEX) process. We isolated four aptamers showing high affinity and specificity for all seven species of Cronobacter, with dissociation constants of 3.7-86.6 nM. This represents the first successful isolation of aptamers for multiple targets using the sequential partitioning method. Further, the selected aptamers could effectively detect Cronobacter spp. in contaminated PIF.


Asunto(s)
Cronobacter , Fórmulas Infantiles , Humanos , Lactante , Oligonucleótidos , Polvos
7.
Mikrochim Acta ; 190(4): 134, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36920558

RESUMEN

A highly sensitive and selective NH3 gas sensor was developed based on single-layer pristine graphene doped with copper(II) oxide (CuO) nanoparticles of a specific size. High-quality single-layer graphene was grown using chemical vapor deposition. Approximately 15 nm-sized CuO colloidal nanoparticles were fabricated by a microwave-assisted thermal method using copper acetate as the precursor, and dimethylformamide as the reducing and stabilizing agent. Pristine graphene was doped with an aqueous suspension of CuO nanoparticles at a coating speed of 1500 rpm using a simple spin coater. CuO nanoparticle doping induces changes in the electronic properties of graphene; in particular, p-type doping significantly altered graphene resistivity in the presence of NH3 gas. Upon exposure of the pristine graphene surface to NH3 gas, NH3 reacted with O2-/ O-/ O2- species on the graphene surface and released electrons into graphene. This caused a change in the concentration of charge carriers in the valence channel of graphene and an increase in graphene resistivity, facilitating real-time NH3 monitoring with quick response and rapid recovery at 25 ℃ and ~ 55% relative humidity. Our results indicated that graphene doped with ~ 15 nm-sized CuO nanoparticles can sense NH3 gas selectively with a resistivity response of ~ 83%. Moreover, the sensor exhibited good reusability, fast response (~ 19 s), and rapid recovery (~ 277 s) with a detection limit of 0.041 ppm and a relative standard deviation of 0.76%.

8.
J Microbiol Biotechnol ; 32(9): 1168-1177, 2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36168204

RESUMEN

Parkinson's disease (PD) is the second-most prevalent neurodegenerative disease and is characterized by dopaminergic neuronal death in the midbrain. Recently, the association between alterations in PD pathology and the gut microbiota has been explored. Microbiota-targeted interventions have been suggested as a novel therapeutic approach for PD. Agathobaculum butyriciproducens SR79T (SR79) is an anaerobic bacterium. Previously, we showed that SR79 treatment induced cognitive improvement and reduced Alzheimer's disease pathologies in a mouse model. In this study, we hypothesized that SR79 treatment may have beneficial effects on PD pathology. To investigate the therapeutic effects of SR79 on PD, 6-hydroxydopamine (6-OHDA)-induced mouse models were used. D-Amphetamine sulfate (d-AMPH)-induced behavioral rotations and dopaminergic cell death were analyzed in unilateral 6-OHDA-lesioned mice. Treatment with SR79 significantly decreased ipsilateral rotations induced by d-AMPH. Moreover, SR79 treatment markedly activated the AKT/GSK3ß signaling pathway in the striatum. In addition, SR79 treatment affected the Nrf2/ARE signaling pathway and its downstream target genes in the striatum of 6-OHDA-lesioned mice. Our findings suggest a protective role of SR79 in 6-OHDA-induced toxicity by regulating the AKT/Nrf2/ARE signaling pathway and astrocyte activation. Thus, SR79 may be a potential microbe-based intervention and therapeutic strategy for PD.


Asunto(s)
Enfermedades Neurodegenerativas , Fármacos Neuroprotectores , Enfermedad de Parkinson , Animales , Composición de Base , Clostridiales , Dextroanfetamina/metabolismo , Dextroanfetamina/farmacología , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/metabolismo , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Ratones , Factor 2 Relacionado con NF-E2/metabolismo , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/metabolismo , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/farmacología , Oxidopamina/metabolismo , Oxidopamina/farmacología , Enfermedad de Parkinson/tratamiento farmacológico , Filogenia , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Ribosómico 16S/metabolismo , Análisis de Secuencia de ADN
9.
Anal Bioanal Chem ; 414(27): 7763-7771, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36071267

RESUMEN

Airborne microbes can rapidly spread and cause various infectious diseases worldwide. This necessitates the determination of a fast and highly sensitive detection method. There have been no studies on receptors targeting Citrobacter braakii (C. braakii), a pathogenic bacterium which can exist in the air. In this study, we rapidly isolate an aptamer, a nucleic acid molecule that can specifically bind to C. braakii by centrifugation-based partitioning method (CBPM) reported previously by our groups as omitting the repeated rounds of binding incubation, separation, and amplification that are indispensable for SELEX. The binding affinity and specificity of isolated aptamers are checked using bacteria in liquid culture and recollection solution from aerosolized bacteria. Recollection solutions of the recovered bacteria are obtained by nebulizing, drying, and recapturing with a biosampler. The CB-5 aptamer shows high affinity and specificity for C. braakii (Kd: 16.42 in liquid culture and 26.91 nM in recollection from aerosolized sample). Our results indicate the current protocol can be employed for the rapid development of reliable diagnostic receptors targeting airborne bacteria.


Asunto(s)
Aptámeros de Nucleótidos , Ácidos Nucleicos , Aptámeros de Nucleótidos/química , Bacterias , Técnica SELEX de Producción de Aptámeros/métodos
10.
Sensors (Basel) ; 22(13)2022 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-35808370

RESUMEN

We synthesized an alcohol-based liquid scintillator (AbLS), and we implemented an auxiliary monitoring system with short calibration intervals using AbLS for particle therapy. The commercial liquid scintillator used in previous studies did not allow the user to control the chemical ratio and its composition. In our study, the chemical ratio of AbLS was freely controlled by simultaneously mixing water and alcohol. To make an equivalent substance to the human body, 2-ethoxyethanol was used. There was no significant difference between AbLS and water in areal density. As an application of AbLS, the range was measured with AbLS using an electron beam in an image analysis that combined AbLS and a digital phone camera. Given a range-energy relationship for the electron expressed as areal density, the electron beam range (cm) in water can be easily estimated. To date, no literature report for the direct comparison of a pixel image analysis and Monte Carlo (MC) simulation has been published. Furthermore, optical tomography of the inverse problem was performed with AbLS and a mobile phone camera. Analyses of optical tomography images provide deeper insight into Radon transformation. In addition, the human phantom, which is difficult to compose with semiconductor diodes, was easily implemented as an image acquisition and analysis system.


Asunto(s)
Electrones , Procesamiento de Imagen Asistido por Computador , Humanos , Método de Montecarlo , Fantasmas de Imagen , Agua
11.
Sci Data ; 9(1): 197, 2022 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-35538082

RESUMEN

The gut microbiota is associated with the health and longevity of the host. A few methods, such as fecal microbiota transplantation and oral administration of probiotics, have been applied to alter the gut microbiome and promote healthy aging. The changes in host microbiomes still remain poorly understood. Here, we characterized both the changes in gut microbial communities and their functional potential derived from colon samples in mouse models during aging. We achieved this through four procedures including co-housing, serum injection, parabiosis, and oral administration of Akkermansia muciniphila as probiotics using bacterial 16 S rRNA sequencing and shotgun metagenomic sequencing. The dataset comprised 16 S rRNA sequencing (36,249,200 paired-end reads, 107 sequencing data) and metagenomic sequencing data (307,194,369 paired-end reads, 109 sequencing data), characterizing the taxonomy of bacterial communities and their functional potential during aging and rejuvenation. The generated data expand the resources of the gut microbiome related to aging and rejuvenation and provide a useful dataset for research on developing therapeutic strategies to achieve healthy active aging.


Asunto(s)
Envejecimiento , Microbioma Gastrointestinal , ARN Ribosómico 16S , Envejecimiento/genética , Animales , Modelos Animales de Enfermedad , Microbioma Gastrointestinal/genética , Metagenómica , Ratones , ARN Ribosómico 16S/genética , Rejuvenecimiento
12.
Microbiome ; 9(1): 240, 2021 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-34906228

RESUMEN

BACKGROUND: The gut microbiota is associated with diverse age-related disorders. Several rejuvenation methods, such as probiotic administration and faecal microbiota transplantation, have been applied to alter the gut microbiome and promote healthy ageing. Nevertheless, prolongation of the health span of aged mice by remodelling the gut microbiome remains challenging. RESULTS: Here, we report the changes in gut microbial communities and their functions in mouse models during ageing and three rejuvenation procedures including co-housing, serum-injection and parabiosis. Our results showed that the compositional structure and gene abundance of the intestinal microbiota changed dynamically during the ageing process. Through the three rejuvenation procedures, we observed that the microbial community and intestinal immunity of aged mice were comparable to those of young mice. The results of metagenomic data analysis underscore the importance of the high abundance of Akkermansia and the butyrate biosynthesis pathway in the rejuvenated mouse group. Furthermore, oral administration of Akkermansia sufficiently ameliorated the senescence-related phenotype in the intestinal systems in aged mice and extended the health span, as evidenced by the frailty index and restoration of muscle atrophy. CONCLUSIONS: In conclusion, the changes in key microbial communities and their functions during ageing and three rejuvenation procedures, and the increase in the healthy lifespan of aged mice by oral administration of Akkermansia. Our results provide a rationale for developing therapeutic strategies to achieve healthy active ageing. Video abstract.


Asunto(s)
Microbioma Gastrointestinal , Envejecimiento Saludable , Microbiota , Envejecimiento , Animales , Microbioma Gastrointestinal/genética , Ratones , Rejuvenecimiento
13.
Analyst ; 146(14): 4708, 2021 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-34132724

RESUMEN

Correction for 'Specific detection of Cronobacter sakazakii in powdered infant formula using ssDNA aptamer' by Hye Ri Kim et al., Analyst, 2021, 146, 3534-3542, DOI: .

14.
Analyst ; 146(11): 3534-3542, 2021 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-33884389

RESUMEN

Cronobacter sakazakii (C. sakazakii) is a foodborne pathogen associated with bacterial meningitis, sepsis, and necrotizing enterocolitis in premature and immuno-compromised infants. C. sakazakii is typically acquired by ingesting contaminated powdered infant formula (PIF). The growing demand for a safe food supply requires rapid detection of foodborne pathogens for delivering safe-to-consume food to consumers. In the present study, we isolated C. sakazakii-specific aptamers using a centrifugation-based partitioning method (CBPM) instead of systematic evolution of ligands by exponential enrichment (SELEX) process. Unlike SELEX, the CBPM reduces the evolution-loop time to obtain enriched probes, allowing the isolation of target-specific aptamers in a shorter time. The two aptamers (SC25 and SC45) isolated using the CBPM showed high affinity and specificity for C. sakazakii (Kd: 34 and 66 nM). Among the two aptamers, SC25 aptamer detected efficiently C. sakazakii in PIF with less cross-reactivity. Our results indicate that the isolated aptamers could be used for detecting C. sakazakii in PIF and reducing the overall testing time compared with the conventional C. sakazakii detection method.


Asunto(s)
Cronobacter sakazakii , Cronobacter sakazakii/genética , ADN de Cadena Simple , Microbiología de Alimentos , Humanos , Lactante , Fórmulas Infantiles , Recién Nacido , Oligonucleótidos , Polvos
15.
Nutr Res ; 86: 96-108, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33551257

RESUMEN

Alzheimer's disease (AD) is the most prevalent neurodegenerative disease, and is characterized by the accumulation and presence of amyloid plaques (Aß), tangles, dementia, and cognitive impairment. Currently, there is no known cure for AD; however, recently, the association between alteration of the gut microbiota and AD pathology has been explored to find novel therapeutic approaches. Microbiota-targeted intervention has been suggested as an attractive therapeutic approach for AD. Agathobaculum butyriciproducens (SR79) is a strict anaerobic and butyric acid-producing bacteria. We hypothesized that administration of SR79 might have a beneficial effect on cognitive deficits and AD pathologies. To determine the therapeutic effects of SR79 on AD pathologies, APP/PS1 transgenic and lipopolysaccharide -induced cognitive impairment mouse models were used. In the lipopolysaccharide -induced cognitive deficit model, the administration of SR79 improved cognitive function and decreased microglia activation. In addition, the administration of SR79 to APP/PS1 mice significantly improved novel object recognition and percent alteration results in novel object recognition and Y-maze alteration tests. Furthermore, Aß plaque deposition and microglial activation were markedly reduced in the parietal cortex and hippocampus after SR79 treatment in APP/PS1 mice. SR79 treatment significantly decreased gene expression levels of IL-1ß and C1QB and increased the gene expression levels of IGF-1 and thereby the downstream signaling pathway in the cortex of APP/PS1 mice. In conclusion, SR79 administration improved cognitive function and AD pathologies through the regulation of neuroinflammation and IGF-1 signaling in an animal model.


Asunto(s)
Enfermedad de Alzheimer/terapia , Clostridiales/fisiología , Cognición , Disfunción Cognitiva/terapia , Microbioma Gastrointestinal/fisiología , Probióticos , Enfermedad de Alzheimer/microbiología , Péptidos beta-Amiloides/metabolismo , Animales , Encéfalo/patología , Encéfalo/fisiopatología , Modelos Animales de Enfermedad , Humanos , Factor I del Crecimiento Similar a la Insulina/genética , Factor I del Crecimiento Similar a la Insulina/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Lipopolisacáridos , Aprendizaje por Laberinto , Ratones , Ratones Transgénicos , Microglía/fisiología , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Placa Amiloide/terapia , Reconocimiento en Psicología
16.
Antonie Van Leeuwenhoek ; 114(3): 275-286, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33566238

RESUMEN

The novel strain AM35T was isolated from the faeces of C57BL/6 mice. These cells are strictly anaerobic, gram negative, oxidase negative, catalase positive, rod-shaped and non-motile. The strain produced creamy yellowish colonies on brain heart infusion (BHI) agar with hemin. Growth was investigated at 30-41 °C in the presence of 0.5-1.5% (w/v) NaCl at pH 6.5-8.5. Taxonomic analysis based on 16S rRNA gene sequencing revealed that strain AM35T is affiliated with the family Muribaculaceae and closely related to the genus Muribaculum. The genomic DNA G + C content of strain AM35T was 47.8 mol%. We detected the whole-cell sugars ribose and galactose; meso-2,6-diaminopimelic acid was absent. The major fatty acids (> 10%) were anteiso-C15:0 and iso-C15:0; the major polar lipid was phosphatidylethanolamine. The major respiratory quinones were MK-10 and MK-11. Based on our phylogenetic, phenotypic and chemotaxonomic analyses, strain AM35T represents a novel genus within the family Muribaculaceae, for which we propose the name Heminiphilus faecis gen. nov., sp. nov. The type strain of Heminiphilus faecis gen. nov., sp. nov. is AM35T (= KCTC 15907 T = DSM 110151 T).


Asunto(s)
Ácidos Grasos , Fosfolípidos , Animales , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/análisis , Heces , Ratones , Ratones Endogámicos C57BL , Fosfolípidos/análisis , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Vitamina K 2
17.
Rev Sci Instrum ; 92(1): 014103, 2021 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-33514224

RESUMEN

This paper proposes a new base material, a mixture of alcohol and water, for liquid scintillators. To date, there are no previous R&D studies for particle detectors with alcohol. In this study, 2-ethoxyethanol, which has a higher density than ethanol, was used to make an equivalent substance to the human body, namely, the skin or epidermis. This paper describes the brief synthesizing process of the alcohol-based liquid scintillator that was investigated and presents some of the feasible results. As one of its applications, a range (beam-path-length) measurement using an electron beam in medical physics is also described. Then, Monte Carlo simulation was performed for comparison with several other measurement results in medical physics. One of the intriguing results is that liquid scintillator component analysis can be performed through the pixel information stored in a mobile digital camera. Through the emission spectra of light, the component of the wavelength converting substances dissolved in the liquid scintillator can be known in the visible region without opening the sealed liquid scintillator. In the near future, the new alcohol-based liquid scintillator currently developed could be used for particle detector or medical imaging applications.

18.
J Microbiol Biotechnol ; 30(2): 248-258, 2020 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-31838792

RESUMEN

The vaginal microbiota may be important for pregnancy prognosis because vaginal dysbiosis during pregnancy appears to be related to preterm birth (PTB) or pregnancy loss. Previous reports have indicated that a Lactobacillus-poor microbial flora in the vagina and intrauterine infection by diverse anaerobes ascending from the vagina are associated with undesirable delivery outcomes. However, no research has involved the use of pyrosequencing analysis to examine vaginal microbiota profiles or their potential associations with high-risk pregnancy in Korean women. Vaginal swabs were collected from 500 Korean women for the identification of community state types (CSTs). Of these, 137 samples were further analyzed using a Roche/454 GS Junior pyrosequencer. Three distinct CSTs were identified based on the dominant vaginal microbes: CST I (Lactobacillus crispatus dominated), CST III (Lactobacillus iners dominated), and CST IV (with diverse species of anaerobes). Twelve of the 67 pregnant women had undesirable pregnancy outcomes (four miscarriages and eight PTBs). The dominant microbe in the vaginal microbiota of women who gave birth at full-term was L. crispatus. In contrast, L. iners was the dominant vaginal microbe in women who miscarried. Most (n = 6/8) vaginal microbiota profiles of women who experienced PTB could be classified as CST IV, with diverse bacteria, including anaerobic vaginal species. The present study provides valuable information regarding the characteristics of the vaginal microbiota of Korean women related to high-risk pregnancy. Investigation of the vaginal microbiotic structure in pregnant Korean women is necessary to enable better prediction of adverse pregnancy outcomes.


Asunto(s)
Microbiota , Embarazo de Alto Riesgo , Vagina/microbiología , Aborto Espontáneo/etiología , Adulto , Carga Bacteriana , Biomarcadores , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Metagenoma , Metagenómica/métodos , Persona de Mediana Edad , Reacción en Cadena de la Polimerasa , Embarazo , Resultado del Embarazo , Nacimiento Prematuro/etiología , Prevalencia , Vigilancia en Salud Pública , ARN Ribosómico 16S , República de Corea/epidemiología , Análisis de Secuencia de ADN , Adulto Joven
19.
Exp Mol Med ; 51(10): 1-14, 2019 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-31666502

RESUMEN

Dysregulated immune responses and impaired function in intestinal epithelial cells contribute to the pathogenesis of inflammatory bowel disease (IBD). Growth arrest and DNA damage-inducible 45 beta (Gadd45ß) has been implicated in the pathogenesis of various inflammatory symptoms. However, the role of Gadd45ß in IBD is completely unknown. This study aimed to evaluate the role of Gadd45ß in IBD. Gadd45ß-KO mice exhibited drastically greater susceptibility to dextran sulfate sodium (DSS)-induced colitis and mortality than C57BL/6J mice. Bone marrow transplantation experiments revealed that Gadd45ß functions predominantly in the intestinal epithelium and is critical during the recovery phase. Gadd45ß regulates the TGF-ß signaling pathway in colon tissue and epithelial cells by inhibiting Smurf-mediated degradation of TGF-ß receptor type 1 via competitive binding to the N-terminal domain of Smad7. Furthermore, these results indicate that the Gadd45ß-regulated TGF-ß signaling pathway is involved in wound healing by enhancing epithelial restitution. These results expand the current understanding of the function of Gadd45ß and its therapeutic potential in ulcerative colitis.


Asunto(s)
Proteínas de Ciclo Celular/genética , Colitis Ulcerosa/genética , Colitis/genética , Enfermedades Inflamatorias del Intestino/genética , Factor de Crecimiento Transformador beta1/genética , Animales , Colitis/inducido químicamente , Colitis/patología , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/patología , Colon/patología , Sulfato de Dextran/toxicidad , Modelos Animales de Enfermedad , Células Epiteliales/metabolismo , Células Epiteliales/patología , Humanos , Enfermedades Inflamatorias del Intestino/inducido químicamente , Enfermedades Inflamatorias del Intestino/patología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Ratones , Proteolisis , Transducción de Señal/genética , Proteína smad7/genética , Ubiquitina-Proteína Ligasas/genética , Cicatrización de Heridas/genética
20.
Front Immunol ; 10: 2373, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31636643

RESUMEN

Endometriosis is a chronic gynecological disorder, characterized by the presence of ectopic endometrial tissue outside the uterine cavity. Among several hypotheses, Sampson's theory of retrograde menstruation is still applicable. Recent studies have reported the importance of inflammation among endometrial tissue, the peritoneum, and immune cells. However, less is known regarding the role of bacterial infection in the pathophysiology of endometriosis. We hypothesized that Ureaplasma urealyticum infection might contribute to the development of endometriosis by inducing the production of inflammatory mediators by peritoneal mesothelial cells (PMCs), possibly through TLR2. Hence, our objective was to reveal whether PMC infection by U. urealyticum is associated with endometriosis. Moreover, we aimed to demonstrate the molecular mechanism involved in this relationship. We developed a new infection-induced mouse model of endometriosis with wild type and Tlr2-deficient mice. Based on the in vivo mouse model, U. urealyticum-infected mice showed significantly increased numbers and sizes of ectopic endometriotic lesions. U. urealyticum upregulated not only the production of IL-6, CXCL1, and CCL2, but also the expression of ICAM-1, VCAM-1, and MMP2 in murine PMCs. Similarly, endometrial stromal cells dose-dependently produced IL-6, CXCL1, and CCL2 in response to U. urealyticum infection. The series of inflammatory responses in PMCs was mediated mainly through TLR2. The phosphorylation of ERK and JNK was observed when U. urealyticum was added to PMCs and knock out of Tlr2 inhibited these MAPKs phosphorylation. Based on our co-culture study, U. urealyticum-infected PMCs exhibited significantly increased attachment to ESCs compared with uninfected PMCs. Collectively, U. urealyticum infection promotes the development of endometriosis by increasing inflammatory mediators, adhesion molecules, and MMP-2 expression in PMCs through TLR2 signaling. Through our results, we present a theory that infection-induced pelvic inflammation contributes to the initiation and progression of endometriosis. Appropriate treatment of reproductive tract infection may decrease the prevalence of endometriosis.


Asunto(s)
Endometriosis/etiología , Enfermedad Inflamatoria Pélvica/complicaciones , Receptor Toll-Like 2/fisiología , Infecciones por Ureaplasma/complicaciones , Ureaplasma urealyticum , Animales , Adhesión Celular , Quimiocina CCL2/biosíntesis , Quimiocina CXCL1/biosíntesis , Modelos Animales de Enfermedad , Femenino , Molécula 1 de Adhesión Intercelular/genética , Interleucina-6/biosíntesis , Sistema de Señalización de MAP Quinasas/fisiología , Metaloproteinasa 2 de la Matriz/genética , Ratones , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...