Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Antiviral Res ; 223: 105836, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38360296

RESUMEN

Foot-and-mouth disease (FMD) is an economically important disease, and the FMD virus (FMDV) can spread rapidly in susceptible animals. FMD is usually controlled through vaccination. However, commercial FMD vaccines are only effective 4-7 days after vaccination. Furthermore, FMDV comprises seven serotypes and various topotypes, and these aspects should be considered when selecting a vaccine. Antiviral agents could provide rapid and broad protection against FMDV. Therefore, this study aimed to develop a fusion protein of consensus porcine interferon-α and Fc portion of porcine antibody IgG (poIFN-α-Fc) using a baculovirus expression system to develop a novel antiviral agent against FMDV. We measured the antiviral effects of the poIFN-α-Fc protein against FMDV and the enhanced duration in vitro and in vivo. The broad-spectrum antiviral effects were tested against seven FMDV serotypes, porcine reproductive and respiratory syndrome virus (PRRSV), and bovine enterovirus (BEV). Furthermore, the early protective effects and neutralizing antibody levels were tested by co-injecting poIFN-α-Fc and an FMD-inactivated vaccine into mice or pigs. Sustained antiviral effects in pig sera and mice were observed, and pigs injected with a combination of the poIFN-α-Fc and an inactivated FMD vaccine were protected against FMDV in a dose-dependent manner at 2- and 4-days post-vaccination. In addition, combined with the inactivated FMD vaccine, poIFN-α-Fc increased the neutralizing antibody levels in mice. Therefore, poIFN-α-Fc is a potential broad-spectrum antiviral and adjuvant candidate that can be used with inactivated FMD vaccines to protect pigs against FMDV.


Asunto(s)
Virus de la Fiebre Aftosa , Vacunas , Bovinos , Porcinos , Animales , Ratones , Interferón-alfa/farmacología , Anticuerpos Neutralizantes , Inmunoglobulina G , Antivirales/farmacología
2.
J Virol ; 96(12): e0052822, 2022 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-35604219

RESUMEN

Foot-and-mouth disease (FMD) is an acute contagious disease that affects cloven-hoofed animals and has severe global economic consequences. FMD is most commonly controlled by vaccination. Currently available commercial FMD vaccines contain chemically inactivated whole viruses, which are thought to be slow acting as they are effective only 4 to 7 days following vaccination. Hence, the development of a novel rapid vaccine or alternative measures, such as antiviral agents or the combination of vaccines and antiviral agents for prompt FMD virus (FMDV) outbreak containment, is desirable. Here, we constructed a recombinant baculovirus (BacMam) expressing consensus porcine interferon alpha (IFN-α) that has three additional N-glycosylation sites driven by a cytomegalovirus immediate early (CMV-IE) promoter (Bac-Con3N IFN-α) for protein expression in mammalian cells. Bac-Con3N IFN-α expressing highly glycosylated porcine IFN-α protein increased the duration of antiviral effects. We evaluated the antiviral effects of Bac-Con3N IFN-α in swine cells and mice and observed sustained antiviral effects in pig serum; additionally, Bac-Con3N IFN-α exhibited sustained antiviral effects in vivo as well as adjuvant effects in combination with an inactivated FMD vaccine. Pigs injected with a combination of Bac-Con3N IFN-α and the inactivated FMD vaccine were protected against FMDV at 1, 3, and 7 days postvaccination. Furthermore, we observed that in combination with the inactivated FMD vaccine, Bac-Con3N IFN-α increased neutralizing antibody levels in mice and pigs. Therefore, we suggest that Bac-Con3N IFN-α is a strong potential antiviral and adjuvant candidate for use in combination with inactivated FMD vaccines to protect pigs against FMDV. IMPORTANCE Early inhibition of foot-and-mouth disease (FMD) virus (FMDV) replication in pigs is highly desirable as FMDV transmission and shedding rates are higher in pigs than in cattle. However, commercial FMD vaccines require at least 4 to 7 days postvaccination (dpv) for protection, and animals are vulnerable to heterologous viruses before acquiring high antibody levels after the second vaccination. Therefore, the development of antiviral agents for use in combination with FMD vaccines is essential. We developed a novel antiviral and immunostimulant, Bac-Con3N IFN-α, which is a modified porcine IFN-α-expressing recombinant baculovirus, to improve IFN stability and allow its direct delivery to animals. We present a promising candidate for use in combination with inactivated FMD vaccines as pigs applied to the strategy had early protection against FMDV at 1 to 7 dpv, and their neutralizing antibody levels were higher than those in pigs administered the vaccine only.


Asunto(s)
Virus de la Fiebre Aftosa , Fiebre Aftosa , Interferón-alfa , Vacunas Virales , Adyuvantes Inmunológicos/farmacología , Animales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Antivirales/farmacología , Baculoviridae , Fiebre Aftosa/inmunología , Fiebre Aftosa/prevención & control , Interferón-alfa/farmacología , Ratones , Porcinos , Vacunas de Productos Inactivados
3.
Vaccines (Basel) ; 9(4)2021 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-33805012

RESUMEN

There are seven viral serotypes of foot-and-mouth disease virus (FMDV): A, O, C, Asia 1, and Southern African Territories 1, 2, and 3 (SAT 1-3). Unlike serotype O FMDV vaccine strains, vaccine strains of serotype A FMDV do not provide broad-range cross-reactivity in serological matching tests with field isolates. Therefore, the topotype/lineage vaccine strain circulating in many countries and a highly immunogenic strain might be advantageous to control serotype A FMDV. We developed a new vaccine strain, A/SKR/Yeoncheon/2017 (A-1), which belongs to the A/ASIA/Sea-97 lineage that frequently occurs in Asian countries. Using virus plaque purification, we selected a vaccine virus with high antigen productivity and the lowest numbers of P1 mutations among cell-adapted virus populations. The A/SKR/Yeoncheon/2017 (A-1) vaccine strain has a single amino acid mutation, VP2 E82K, in the P1 region, and it is perfectly adapted to suspension culture. The A/SKR/Yeoncheon/2017 (A-1) experimental vaccine conferred high immunogenicity in pigs. The vaccine strain was serologically matched with various field isolates in two-dimensional virus neutralization tests using bovine serum. Vaccinated mice were protected against an A/MAY/97 virus that was serologically mismatched with the vaccine strain. Thus, A/SKR/Yeoncheon/2017 (A-1) might be a promising vaccine candidate for protection against the emerging FMDV serotype A in Asia.

4.
NPJ Vaccines ; 6(1): 42, 2021 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-33772029

RESUMEN

Current foot-and-mouth disease (FMD) vaccines have significant limitations, including side effects due to oil emulsions at the vaccination site, a narrow spectrum of protective efficacy, and incomplete host defenses mediated by humoral immunity alone. To overcome these limitations, new FMD vaccines must ensure improved safety with non-oil-based adjuvants, a broad spectrum of host defenses within/between serotypes, and the simultaneous induction of cellular and humoral immunity. We designed a novel, immune-potent, recombinant protein rpHSP70-AD that induces robust cellular immunity and elicits a broad spectrum of host defenses against FMD virus (FMDV) infections. We demonstrated that an oil emulsion-free vaccine containing rpHSP70-AD mediates early, mid-term, and long-term immunity and drives potent host protection against FMDV type O and A, suggesting its potential as an FMD vaccine adjuvant in mice and pigs. These results suggest a key strategy for establishing next-generation FMD vaccines, including novel adjuvants.

5.
Vaccine ; 39(12): 1701-1707, 2021 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-33618945

RESUMEN

Two type O commercial vaccines, the O1/Campos and O/Primorsky/2014 vaccines, were studied to evaluate the in vivo efficacy in pigs against heterologous virus challenge with the O/SKR/Jincheon/2014 virus (O/SEA/Mya-98 lineage) isolated in Korea in 2014. The in vivo challenge results indicated that both vaccines induced a high heterologous virus neutralization test (VNT) titer by a single injection and successfully protected specific pathogen-free (SPF) pigs from challenge infection. To determine the optimal vaccination age, a field trial with each vaccine was conducted with three one-shot-vaccinated groups that were injected at 8, 12, or 14 weeks of age and one two-shot-vaccinated group that was injected at 8 and 12 weeks of age in the pig farms. In these field trials, the improved serological performance at 20 and 24 weeks of age expected with vaccination at 12 or 14 weeks of age was not observed, although improved serological results were expected as the result of decreasing interference of maternally derived antibodies (MDAs), as MDAs waned with age. In addition, delayed vaccination resulted in MDA depletion at 14 weeks of age. Therefore, the optimal age for primary vaccination with two different formulated vaccines was 8 weeks old in pigs, considering that MDAs could provide a protective immunity against foot-and-mouth disease (FMD) infection. Prolonged significantly higher VNT titers of immunized pigs were demonstrated in the two-shot-vaccinated groups. In total, the effectiveness of the two vaccines was demonstrated through efficacy tests and field trials in pigs.


Asunto(s)
Virus de la Fiebre Aftosa , Fiebre Aftosa , Enfermedades de los Porcinos , Vacunas Virales , Animales , Anticuerpos Antivirales , Asia Oriental , Fiebre Aftosa/prevención & control , República de Corea , Porcinos , Enfermedades de los Porcinos/prevención & control , Vacunación
6.
Vet Microbiol ; 253: 108975, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33418393

RESUMEN

The type Asia1 genetic group(G)-V lineage foot-and-mouth disease (FMD) virus was identified in the East-Asian region in 2009. To date, only Shamir has been used as a standard vaccine strain worldwide for type Asia1. To prevent type Asia1 FMD in eastern Asia, two vaccine strains (ASM-R: G-V and ASM-SM: G-V/Shamir fusion) were developed and tested against type Asia1 virus strains. After immunization with the two experimental vaccines, the ASM-SM strain showed a higher level of protection against Shamir virus in mice. Additional immunogenicity tests were carried out in cattle and pigs, revealing sufficient antibody production capable of protecting the animals against the viral challenge. In cattle, the immune response started just 2 weeks after vaccination. Immunogenicity was lower in pigs, but antibody production was greatly increased to a high level after a second vaccination round. In particular, herein, 60 % and 100 % of the vaccinated pigs challenged with the Asia1 Shamir virus were determined to be clinically protected after one and two vaccination rounds with ASM-R, respectively. Pigs vaccinated twice produced sufficient antibody titers with low virus shedding for short time. Moreover, ASM-SM single-vaccinated pigs showed 100 % protection when challenged with the Asia1 Shamir virus. In summary, the vaccine strain ASM-SM designed for the defense of the Asian region efficiently granted protection to pigs against the typical Asia1 virus, Shamir.


Asunto(s)
Anticuerpos Antivirales/sangre , Enfermedades de los Bovinos/prevención & control , Virus de la Fiebre Aftosa/inmunología , Fiebre Aftosa/prevención & control , Enfermedades de los Porcinos/prevención & control , Vacunas Virales/genética , Animales , Anticuerpos Antivirales/inmunología , Bovinos , Enfermedades de los Bovinos/virología , Asia Oriental , Femenino , Fiebre Aftosa/inmunología , Virus de la Fiebre Aftosa/genética , Inmunogenicidad Vacunal , Ratones , Ratones Endogámicos C57BL , Porcinos , Enfermedades de los Porcinos/virología , Vacunas Virales/administración & dosificación , Vacunas Virales/inmunología , Esparcimiento de Virus
7.
J Vet Sci ; 21(5): e74, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33016020

RESUMEN

BACKGROUND: The quality of a vaccine depends strongly on the effects of the adjuvants applied simultaneously with the antigen in the vaccine. The adjuvants enhance the protective effect of the vaccine against a viral challenge. Conversely, oil-type adjuvants leave oil residue inside the bodies of the injected animals that can produce a local reaction in the muscle. The long-term immunogenicity of mice after vaccination was examined. ISA206 or ISA15 oil adjuvants maintained the best immunity, protective capability, and safety among the oil adjuvants in the experimental group. OBJECTIVES: This study screened the adjuvant composites aimed at enhancing foot-and-mouth disease (FMD) immunity. The C-type lectin or toll-like receptor (TLR) agonist showed the most improved protection rate. METHODS: Experimental vaccines were fabricated by mixing various known oil adjuvants and composites that can act as immunogenic adjuvants (gel, saponin, and other components) and examined the enhancement effect on the vaccine. RESULTS: The water in oil (W/O) and water in oil in water (W/O/W) adjuvants showed better immune effects than the oil in water (O/W) adjuvants, which have a small volume of oil component. The W/O type left the largest amount of oil residue, followed by W/O/W and O/W types. In the mouse model, intramuscular inoculation showed a better protection rate than subcutaneous inoculation. Moreover, the protective effect was particularly weak in the case of inoculation in fatty tissue. The initial immune reaction and persistence of long-term immunity were also confirmed in an immune reaction on pigs. CONCLUSIONS: The new experimental vaccine with immunostimulants produces improved immune responses and safety in pigs than general oil-adjuvanted vaccines.


Asunto(s)
Adyuvantes Inmunológicos/farmacología , Virus de la Fiebre Aftosa/inmunología , Fiebre Aftosa/prevención & control , Enfermedades de los Porcinos/prevención & control , Vacunación/veterinaria , Vacunas Virales/farmacología , Animales , Anticuerpos Antivirales/inmunología , Formación de Anticuerpos , Fiebre Aftosa/inmunología , Fiebre Aftosa/virología , Ratones , Ratones Endogámicos C57BL , Porcinos , Enfermedades de los Porcinos/inmunología , Enfermedades de los Porcinos/virología , Vacunas Virales/inmunología
8.
Viruses ; 12(9)2020 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-32927791

RESUMEN

Foot-and-mouth disease (FMD) is an economically devastating animal disease. Adapting the field virus to cells is critical to the vaccine production of FMD viruses (FMDV), and heparan sulfate (HS) and Jumonji C-domain-containing protein 6 (JMJD6) are alternative receptors of cell-adapted FMDV. We performed serial passages of FMDV O/SKR/Andong/2010, classified as the O/Mya-98 topotype/lineage and known as a highly virulent strain, to develop a vaccine seed virus. We traced changes in the amino acid sequences of the P1 region, plaque phenotypes, and the receptor usage of the viruses, and then structurally analyzed the mutations. VP3 H56R and D60G mutations were observed in viruses using the HS receptor and led to changes in the hydrogen bonding between VP3 56 and 60. A VP1 P208L mutation was observed in the virus using the JMJD6 receptor during cell adaptation, enabling the interaction with JMJD6 through the formation of a new hydrogen bond with JMJD6 residue 300. Furthermore, VP1 208 was near the VP1 95/96 amino acids, previously reported as critical mutations for JMJD6 receptor interactions. Thus, the mutation at VP1 208 could be critical for cell adaptation related to the JMJD6 receptor and may serve as a basis for mechanism studies on FMDV cell adaptation.


Asunto(s)
Virus de la Fiebre Aftosa/genética , Histona Demetilasas con Dominio de Jumonji/metabolismo , Mutación , Receptores Virales/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas de la Cápside/química , Proteínas de la Cápside/genética , Línea Celular , Cricetinae , Fiebre Aftosa/virología , Heparitina Sulfato/metabolismo , Simulación del Acoplamiento Molecular , Dominios y Motivos de Interacción de Proteínas , Serogrupo , Vacunas Virales
9.
Antiviral Res ; 182: 104920, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32828822

RESUMEN

Foot-and-mouth disease (FMD) is an economically devastating animal disease. There are seven serotypes, A, O, C, Asia 1, Southern African Territories 1, 2, and 3 (SAT1, SAT2, and SAT3), among which serotype O shows the greatest distribution worldwide. Specifically, the O/ME-SA/Ind-2001 lineage, which was reported in India in 2001, has since emerged worldwide, with the O/ME-SA/Ind-2001d and O/ME-SA/Ind-2001e sublineages recently emerging in North Africa, Middle East Asia, Southeast Asia, and East Asia. The antigenic relationship (r1) value for the O1 Manisa and O/Mya-98 lineage inactivated vaccine against various O/ME-SA/Ind-2001 lineages of FMDV isolates, were matching (r1 > 0.3) or non-matching (r1 < 0.3), indicating that the vaccine based on the O/ME-SA/Ind-2001 lineage FMDV, is valuable. In this study, we developed a new vaccine strain, O/SKR/Boeun/2017 isolate, belonging to the O/ME-SA/Ind-2001e sublineage as an outbreak of this sublineage occurred in 2017 in the Boeun county of the Republic of Korea (O/SKR/Boeun/2017). This experimental vaccine exhibited high immunogenicity in pigs and cattle and was antigenically matched with representative FMDV lineages (ME-SA, O/ME-SA/PanAsia, O/SEA/Mya-98, and O/Cathay) in Asia, as demonstrated by two-dimensional virus neutralization tests (2D-VNT). In addition, a 100% survival rate in C56BL/6 mice vaccinated with 1/15 of a pig dose was observed following challenge with FMDV O/VIT/2013 (O/ME-SA/PanAsia) at 10 days post-vaccination. Further, we analyzed the major antigenic sites of the O/SKR/Boeun/2017 vaccine strain as well as other viruses, by 2D-VNT. These results suggest that the O/ME-SA/Ind-2001e sublineage is a promising vaccine strain candidate in Asia, and other countries, for protection against the emerging FMDV.


Asunto(s)
Antígenos Virales/inmunología , Virus de la Fiebre Aftosa/inmunología , Fiebre Aftosa/prevención & control , Inmunogenicidad Vacunal , Vacunas Virales/inmunología , Animales , Bovinos , Línea Celular , Cricetinae , Femenino , Fiebre Aftosa/inmunología , Cabras , Riñón/citología , Ratones , Ratones Endogámicos C57BL , Pruebas de Neutralización , Porcinos , Vacunación , Vacunas Virales/administración & dosificación
10.
Vet Microbiol ; 248: 108802, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32827925

RESUMEN

Newly developed vaccine strains to prevent foot-and-mouth disease caused by the emerging serotype Asia1 virus were evaluated. To protect against the group (G)-VIII strain, which occurred recently, we produced an infectious cDNA clone of Asia1 Shamir cDNA (Asia1 Shamir-R). In addition, by adding a site 1 epitope of VP1 of the G-VIII lineage virus to this virus, we produced a new virus (Sham GVIII- EPI), and another virus(Sham GVIII-VP1) was replaced with that of G-VIII lineage in the VP1 region of Shamir. Test vaccines were produced using these three types of vaccine virus, and their immunogenicity and protection capabilities were evaluated in mice. Immunized mice were challenged with the Asia1 Shamir or G-VIII virus, and the results show that all the vaccines have similar protective effects. As they showed similar antigenicity, we chose the Shamir-R vaccine. Pigs maintained relatively high neutralizing antibody levels against homologous viruses of the Shamir and G-VII or G-VIII lineage three to four weeks after immunization. However, they formed relatively low levels of antibodies to G-IV and G-V viruses. In conclusion, we produced a vaccine candidate capable of protection against the G-VIII virus in the vaccine experiment for the type Asia1 serotype vaccine. This Shamir-R vaccine virus was found to protect against the viruses of the Asia1 genotype G-VII and G-VIII lineages, which occurred recently in Asia.


Asunto(s)
Anticuerpos Neutralizantes/sangre , Antígenos Virales/inmunología , Virus de la Fiebre Aftosa/inmunología , Fiebre Aftosa/prevención & control , Enfermedades de los Porcinos/prevención & control , Vacunas Virales/inmunología , Animales , Asia , Proteínas de la Cápside/inmunología , Epítopos/inmunología , Femenino , Fiebre Aftosa/inmunología , Virus de la Fiebre Aftosa/clasificación , Inmunogenicidad Vacunal , Ratones , Ratones Endogámicos C57BL , Serogrupo , Porcinos , Enfermedades de los Porcinos/virología , Vacunación
11.
Vaccines (Basel) ; 8(2)2020 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-32481687

RESUMEN

Currently available commercial foot-and-mouth disease (FMD) vaccines have various limitations, such as the slow induction and short-term maintenance of antibody titers. Therefore, a novel FMD vaccine that can rapidly induce high neutralizing antibody titers to protect the host in early stages of an FMD virus infection, maintain high antibody titers for long periods after one vaccination dose, and confer full protection against clinical symptoms by simultaneously stimulating cellular and humoral immunity is needed. Here, we developed immunopotent FMD vaccine strains A-3A and A-HSP70, which elicit strong initial cellular immune response and induce humoral immune response, including long-lasting memory response. We purified the antigen (inactivated virus) derived from these immunopotent vaccine strains, and evaluated the immunogenicity and efficacy of the vaccines containing these antigens in mice and pigs. The immunopotent vaccine strains A-3A and A-HSP70 demonstrated superior immunogenicity compared with the A strain (backbone strain) in mice. The oil emulsion-free vaccine containing A-3A and A-HSP70 antigens effectively induced early, mid-term, and long-term immunity in mice and pigs by eliciting robust cellular and humoral immune responses through the activation of co-stimulatory molecules and the secretion of proinflammatory cytokines. We successfully derived an innovative FMD vaccine formulation to create more effective FMD vaccines.

12.
Vaccine ; 38(7): 1723-1729, 2020 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-31892447

RESUMEN

To control foot-and-mouth disease (FMD) outbreaks that originated in Jincheon County in South Korea between 2014 and 2015, several commercial vaccines were studied for their efficacy and serological performance in the field. In this study, the efficacy of the O SKR 7/10 vaccine was evaluated by challenge with the FMD virus (FMDV) O/Jincheon/SKR/2014 (O Jincheon), which has the same O/SEA/Mya-98 lineage as the O/SKR/7/10 strain that was isolated in 2010 in South Korea, in FMD-seronegative pigs. Full protection against the O Jincheon virus was demonstrated as early as 14 days postvaccination, which was explained by the strong serological relationship (r1 value: ≥ 0.92) between the O Jincheon and O SKR 2010 viruses. However, in the field trial, no satisfactory serological elevations against FMDV were observed, even in the double-vaccinated groups. Therefore, it can be concluded that the O SKR 7/10 vaccine may need to be improved to overcome the interference effects from the high levels of maternally-derived antibodies generated due to the mandatory nationwide vaccination of sows in South Korea.


Asunto(s)
Anticuerpos Antivirales/sangre , Fiebre Aftosa , Inmunidad Materno-Adquirida , Vacunas Virales/inmunología , Animales , Emulsiones , Femenino , Fiebre Aftosa/prevención & control , Virus de la Fiebre Aftosa/inmunología , República de Corea , Porcinos/inmunología
13.
Vaccine ; 38(5): 1120-1128, 2020 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-31810782

RESUMEN

Efforts are required to develop foot-and-mouth disease (FMD) vaccines in Asia that can respond to the type O outbreaks that have continued with the devastating damage since 2010. It is necessary to develop vaccine strains that can provide protection against the ME-SA topotype, which has tended to spread into neighboring areas, and the frequent SEA topotype outbreaks. To this end, this study aimed to develop a FMD vaccine utilizing O PanAsia-2 that is able to provide broad protection against ME-SA as the vaccine strain, with a focus on the O/Jincheon/SKR/2014 virus (SEA topotype), the outbreaks of which have persisted in spite of the enforcement of FMD vaccination. The virus neutralizing antibody (VN) titer to the ME-SA topotype (especially, Ind2001 lineage) virus in pigs was the highest, followed by SEA, while the VN titers to the Cathay and EURO-SA topotypes were similar. In the O/Jincheon/SKR/2014 virus challenge test, all pigs were protected against the virus, and almost no virus shedding was detected after the virus challenge. In the immunization test performed on cattle and pigs, antibodies with sufficient protective activity were produced in cattle two weeks after the first immunization, and pigs exhibited lower immunity compared to cattle. However, immunity was improved enough in pigs to provide protection against the virus challenge after the second immunization, with a significant increase in antibody production.


Asunto(s)
Virus de la Fiebre Aftosa , Fiebre Aftosa , Enfermedades de los Porcinos , Vacunas Virales , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Bovinos , Fiebre Aftosa/prevención & control , Virus de la Fiebre Aftosa/clasificación , Virus de la Fiebre Aftosa/inmunología , Inmunogenicidad Vacunal , Porcinos , Enfermedades de los Porcinos/prevención & control , Vacunas Virales/inmunología
14.
Virol J ; 16(1): 156, 2019 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-31842907

RESUMEN

BACKGROUND: The foot-and-mouth disease (FMD) virus is classified into seven serotypes, of which the South African types have South African Territories (SAT)1, SAT2, and SAT3 that are prevalent in Africa. Especially SAT2 have spread to Arabian Peninsula and the Palestinian Autonomous Territories. Of these viruses, the incidence of SAT2 is the highest. It is important to prepare for the spread of the virus to other continents, even though most FMD viruses are bovine-derived. In particular, due to the high breeding density of pigs in Asia, more attention is usually paid to the immunity and protection of pigs than cattle. For this reason, this study investigated the immunity and protection of pigs against the SAT viruses. METHODS: Specific vaccines were developed for SAT1, SAT2, and SAT3 serotypes. These vaccine viruses were designed to be distinguished from the wild-type strain. An immunogenicity test was conducted using these vaccines in both cattle (n = 5/group) and pigs (n = 20/group). RESULTS: High virus-neutralizing titer of antibodies (> 1:100) was induced in only 2 weeks after the immunization of cattle with the individual vaccine for SAT1, SAT2 or SAT3, and a clear immune response was induced after the second immunization in pigs. When the vaccinated pigs (n = 4-5/group) were challenged by the homologous wild-type virus strain 4 weeks after immunization, all the pigs were protected from the challenge. CONCLUSIONS: This study confirmed that these vaccines can be used against SAT1, SAT2, and SAT3 viruses in cattle and pigs. The vaccine strains developed in this study are expected to be used as vaccines that can protect against FMD in the event of a future FMD outbreak in pigs in consideration of the situation in Asia.


Asunto(s)
Virus de la Fiebre Aftosa/inmunología , Fiebre Aftosa/prevención & control , Enfermedades de los Porcinos/prevención & control , Vacunas Virales/administración & dosificación , Vacunas Virales/inmunología , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Bovinos , Enfermedades de los Bovinos/prevención & control , Virus de la Fiebre Aftosa/clasificación , Serogrupo , Porcinos , Resultado del Tratamiento , Vacunas de Productos Inactivados/administración & dosificación , Vacunas de Productos Inactivados/inmunología , Vacunas Marcadoras/administración & dosificación , Vacunas Marcadoras/inmunología
15.
Front Immunol ; 10: 2509, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31736952

RESUMEN

Conventional foot-and-mouth disease (FMD) vaccines exhibit several limitations, such as the slow induction of antibodies, short-term persistence of antibody titers, as well as low vaccine efficacy and safety, in pigs. Despite the importance of cellular immune response in host defense at the early stages of foot-and-mouth disease virus (FMDV) infection, most FMD vaccines focus on humoral immune response. Antibody response alone is insufficient to provide full protection against FMDV infection; cellular immunity is also required. Therefore, it is necessary to design a strategy for developing a novel FMD vaccine that induces a more potent, cellular immune response and a long-lasting humoral immune response that is also safe. Previously, we demonstrated the potential of various pattern recognition receptor (PRR) ligands and cytokines as adjuvants for the FMD vaccine. Based on these results, we investigated PRR ligands and cytokines adjuvant-mediated memory response in mice. Additionally, we also investigated cellular immune response in peripheral blood mononuclear cells (PBMCs) isolated from cattle and pigs. We further evaluated target-specific adjuvants, including Mincle, STING, TLR-7/8, and Dectin-1/2 ligand, for their role in generating ligand-mediated and long-lasting memory responses in cattle and pigs. The combination of Mincle and STING-stimulating ligands, such as trehalose-6, 6'dibehenate (TDB), and bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP), induced high levels of antigen-specific and virus-neutralizing antibody titers at the early stages of vaccination and maintained a long-lasting immune memory response in pigs. These findings are expected to provide important clues for the development of a robust FMD vaccine that stimulates both cellular and humoral immune responses, which would elicit a long-lasting, effective immune response, and address the limitations seen in the current FMD vaccine.


Asunto(s)
Virus de la Fiebre Aftosa/inmunología , Fiebre Aftosa/inmunología , Fiebre Aftosa/metabolismo , Inmunidad Celular , Memoria Inmunológica , Proteínas de la Membrana/metabolismo , Vacunas Virales/inmunología , Adyuvantes Inmunológicos , Animales , Anticuerpos Antivirales/inmunología , Antígenos Virales/inmunología , Biomarcadores , Bovinos , Proliferación Celular , Citocinas/metabolismo , Fiebre Aftosa/virología , Inmunofenotipificación , Ratones , Porcinos , Vacunación
16.
Vet Microbiol ; 236: 108374, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31500734

RESUMEN

Foot-and-mouth disease (FMD) is a highly contagious disease and causes economic damage at a national level. In particular, the type O FMD virus (FMDV) is a serotype that causes FMD outbreaks most frequently in the world. In recent years, Southeast Asia (SEA), Middle East-South Asia (ME-SA), and Cathay topotype-mediated FMD are prevalent in Asia, among which the SEA and ME-SA topotypes cause a majority of the outbreaks. The SEA topotype virus is more likely to infect both cattle and pigs simultaneously, thereby resulting in more severe damages; thus, it is necessary to study the protection ability of the candidate vaccines of this topotype after immunization. In this study, an experimental vaccine for pigs was produced using a vaccine strain that contains the structural protein of the O Taiwan97 strain, which was derived from the Cathay topotype, and its effect was evaluated. In the immunization test in pigs and cattle, the antibody titers were found to be elevated two weeks after immunization and very high titers of neutralizing antibodies were formed after four weeks. After the second inoculation, very high titers of neutralizing antibodies were produced in both species in the fourth week after immunization, and the antibodies maintained for up to six months and three months in cattle and pigs, respectively. No significant immunological difference in antibody production was observed in cattle and pigs. This study confirmed that complete protection from the challenge of the SEA topotype virus (O/Jincheon/SKR/2014), although the antibody titers against O/Jincheon/SKR/2014 strain were not that high, was achieved through immunization with the newly developed Cathay topotype vaccine in pigs.


Asunto(s)
Virus de la Fiebre Aftosa/clasificación , Fiebre Aftosa/prevención & control , Enfermedades de los Porcinos/prevención & control , Vacunas Virales/inmunología , Animales , Anticuerpos Antivirales/sangre , Fiebre Aftosa/epidemiología , Fiebre Aftosa/virología , Ratones , Ratones Endogámicos ICR , República de Corea/epidemiología , Porcinos , Enfermedades de los Porcinos/virología , Esparcimiento de Virus
17.
J Vet Sci ; 20(4): e42, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31364326

RESUMEN

Foot-and-mouth disease (FMD) is an acute epidemic that spreads rapidly among cattle and pigs. In 2014, in Korea, despite enforced vaccination, the type O Southeast Asia (SEA) topotype viruses (Mya-98 lineage) infected mainly cattle and pigs simultaneously, thereby causing enormous damage. If a vaccine that is completely protective against this FMD virus is developed and used, it can become a very important preventive measure in Asia, which is where this type of virus mainly circulates. The SEA topotype has been steadily evolving and transforming into new variations since it became epidemic in Asia. Therefore, it became necessary to develop a new vaccine that could provide protection against the FMD virus strain that was responsible for the 2014-2015 outbreak in Korea. This study aimed to develop a vaccine that would provide complete protection against the SEA topotype FMD virus to control sporadic FMD outbreaks, which occur despite the enforcement of vaccination, and to completely prevent virus shedding, thereby preventing the virus from spreading. The vaccine candidate virus developed in this study showed low pathogenicity and can be distinguished from the wild-type FMD virus strain. The developed vaccine was able to protect mice from SEA and Middle East-South Asia topotype virus strains and induced high titers of antibodies against both virus strains in pigs, thereby confirming the sufficiency of its protective function. In particular, the results of the SEA topotype virus challenge test in pigs revealed that perfect immunity was created in the vaccinated pigs, without virus shedding and viremia.


Asunto(s)
Virus de la Fiebre Aftosa/inmunología , Fiebre Aftosa/prevención & control , Enfermedades de los Porcinos/prevención & control , Vacunas Virales/farmacología , Animales , Fiebre Aftosa/inmunología , Fiebre Aftosa/virología , República de Corea , Porcinos , Enfermedades de los Porcinos/inmunología , Enfermedades de los Porcinos/virología
18.
Vet Microbiol ; 234: 44-50, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31213271

RESUMEN

Foot-and-mouth disease virus (FMDV) is the cause of an economically devastating disease in major cloven-hoofed livestock. Although type C foot-and-mouth disease (FMD) has not occurred anywhere worldwide since 2004, the antigen bank should be preserved in preparation for an unexpected outbreak. We therefore conducted experiments to develop inactivated vaccines that are safer and exhibit improved characteristics over existing vaccines. Our previous study showed that the replacement of the capsid-encoding gene (P1) from the vaccine strain O1 Manisa could be rescued successfully from the vaccine strains. In addition, novel point mutation in the 3C region in the virus genome, for induction of properties with low pathogenesis to create a safe vaccine, and 3B1B2 replacement, for differential diagnosis with the wild type virus, were performed. The modified FMD vaccine strain, C3 Resende-R, was shown to provide lower pathogenesis in young mice than the wild-type virus. To identify the immune responses after vaccination with 146S antigen (15 µg/mL/dose), we conducted a virus neutralization test using serum from pigs and cattle vaccinated with the inactivated vaccine. The neutralizing titers in the cattle were higher than those in the pigs and maintained mean antibody titers of around 1:100 until the end of the experiment. The vaccine showed protection capability of 16 PD50 against C3 Resende virus in the pigs. The replacement of the structural protein-coding gene for the new FMDV was a useful tool in the development of an effective vaccine candidate strain. This inactivated vaccine will be used for the establishment of a safe vaccine strain for the antigen bank.


Asunto(s)
Anticuerpos Antivirales/sangre , Fiebre Aftosa/prevención & control , Vacunas Virales/inmunología , Animales , Animales Lactantes , Bovinos , Femenino , Virus de la Fiebre Aftosa , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Pruebas de Neutralización , Porcinos , Vacunas de Productos Inactivados/inmunología
19.
J Vet Sci ; 20(3): e29, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31161747

RESUMEN

Vaccination is one of the most effective ways of controlling and preventing foot-and-mouth disease (FMD) outbreaks. The effective prevention of this disease requires the use of high-quality vaccines to meet the criteria that enable customers to use them simply. The administration of FMD vaccines containing oil-based adjuvants in pigs can induce the formation of granuloma in the muscle of the vaccinated, which makes these vaccines a less preferable option. Therefore, it is important to establish an FMD vaccine and vaccine delivery tool that offers better immunity and safer application. This study compared the immune responses of intramuscular and needleless intradermal vaccination in pigs. When the same amount of an FMD virus (FMDV) antigen was administered to pigs, both the intradermally and intramuscularly vaccinated groups were protected completely against a challenge of the homologous FMDV, but the intramuscularly vaccinated group showed an overall higher level of neutralizing antibodies. Importantly, the formation of granuloma in muscle could be excluded in the intradermally vaccinated group. Of the oil-based adjuvants selected in this study, ISA 207 was effective in eliciting immunogenicity in intradermal vaccination. In conclusion, a new vaccine formula can be chosen for the delivery of intradermal route to exclude the possibility of local reactions in the muscle and generate protective immunity against an FMDV challenge.


Asunto(s)
Anticuerpos Antivirales/sangre , Fiebre Aftosa/inmunología , Absorción Cutánea/inmunología , Enfermedades de los Porcinos/inmunología , Vacunación/veterinaria , Vacunas Virales/administración & dosificación , Adyuvantes Inmunológicos , Animales , Anticuerpos Antivirales/inmunología , Fiebre Aftosa/prevención & control , Virus de la Fiebre Aftosa/inmunología , Inyecciones Intramusculares/veterinaria , Porcinos , Enfermedades de los Porcinos/prevención & control , Vacunas Virales/inmunología
20.
Vaccine ; 37(29): 3825-3831, 2019 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-31138453

RESUMEN

Currently, foot-and-mouth disease (FMD) vaccine purity is tested in cattle to detect antibodies against the non-structural protein (NSP) after repeated immunization with the final vaccine product. In case of vaccine failure, the manufacturing company would suffer significant economic loss. To prevent such unfortunate losses with the final vaccine product, in vitro testing is required to quantitate an NSP antigen during the manufacturing process prior to animal experiments. A novel lateral-flow assay device was developed using a monoclonal antibody (MAb) against the 3B NSP. To determine the minimal amount of NSP required to elicit antibodies in livestock, goats were immunized several times with various concentrations of either the recombinant 3AB (rec.3AB) protein or FMD virus culture supernatant. Antibodies against 3AB were elicited after a second immunization with 10.6 ng to 42.5 ng of rec.3AB and a third immunization with a 10-fold diluted FMD virus culture supernatant in goats. The lateral-flow assay device detected the minimal amount of rec.3AB and native NSP in FMD virus culture supernatant required to induce NSP antibodies in goats. The in vitro assay device is simple and economical, provides rapid results, and should be useful for FMD vaccine-manufacturing companies prior to conducting animal experiments to test the vaccine purity.


Asunto(s)
Anticuerpos Antivirales/sangre , Fiebre Aftosa/prevención & control , Vacunación/veterinaria , Proteínas no Estructurales Virales/inmunología , Vacunas Virales/normas , Experimentación Animal , Animales , Anticuerpos Monoclonales/inmunología , Medios de Cultivo , Virus de la Fiebre Aftosa , Cabras , Inmunoensayo , Ganado/inmunología , Masculino , Proteínas Recombinantes/inmunología , Vacunas Virales/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...