Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Antioxidants (Basel) ; 12(8)2023 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-37627646

RESUMEN

Chronic neurodegenerative diseases are typically associated with oxidative stress conditions leading to neuronal cell death. We aimed to investigate the neuroprotective effect of three pyranocoumarins (decursin, decursinol angelate, and decursinol) targeting oxidative stress factors. Decursin (also known as dehydro-8-prenylnaringenin) is a prenylated coumarin compound consisting of a coumarin ring system with a prenyl group attached to one of the carbons in the ring. As a secondary metabolite of plants, pyranocoumarin decursin from Angelica gigas Nakai presented protective effects against glutamate-induced oxidative stress in HT22, a murine hippocampal neuronal cell line. Decursinol (DOH) is a metabolite of decursin, sharing same coumarin ring system but a slightly different chemical structure with the prenyl group replaced by a hydroxyl group (-OH). In our findings, DOH was ineffective while decursin was, suggesting that this prenyl structure may be important for compound absorption and neuroprotection. By diminishing the accumulation of intracellular reactive oxygen species as well as stimulating the expression of HO-1, decursin triggers the self-protection system in neuronal cells. Additionally, decursin also revealed an anti-apoptotic effect by inhibiting chromatin condensation and reducing the forming of annexin-V-positive cells.

2.
Phytomedicine ; 100: 154037, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35358929

RESUMEN

BACKGROUND: Moringa oleifera (M. oleifera) is cultivated throughout the world and it is known by numerous regional names and is consumed as medication for various diseases such as hypertension, diabetes, HIV and is potential source of nutrients and natural antioxidants making it among the most useful trees. METHODS: We evaluated the therapeutic potential of M. oleifera on ethanol-induced fatty liver. The mice were treated with 30% ethanol (EtOH) alone or in combination with different concentration of M. oleifera extracts (100, 200 and 400 mg/kg). We performed biochemical estimation for the serum of important liver damage markers such as aspartate aminotransferase (AST), alanine aminotransferase (ALT) and triglyceride (TG). We performed histopathological analysis from the liver tissues of different mice groups. We also performed ELISA assay, western blotting analysis and SPECT imaging to obtain our results. RESULTS: The results for serum (AST, p < 0.0001), (ALT, p < 0.0006) and triglyceride (TG, p < 0.0003) were found to be significantly reduced in all doses of M. oleifera extract treatment groups in comparison with the ethanol group. H&E staining analysis and scoring revealed a significant reduction in lipid droplet accumulation and a significant reduction of liver steatosis (p < 0.0001), lobular inflammation (p < 0.0013), ballooning (p < 0.0004) and immunohistochemistry for TNF-α. M. oleifera also ameliorated ethanol-induced oxidative stress evaluated through MDA (p < 0.0001), H2DCFDA, JC-1 staining and a significant down-regulation of CYP2E1 enzyme (p < 0.0001) in the 200 and 400 mg/kg groups in comparison with EtOH groups. M. oleifera extract also boosted the antioxidant response evaluated through total GSH assay (p < 0.0001) and nuclear translocation of Nrf2. Furthermore, we performed SPECT imaging and evaluated the liver uptake value (LUV) to assess the extent of liver damage. LUV was observed to be lower in the ethanol group, whereas LUV was higher in control and M. olifera treated groups. CONCLUSION: In summary, from this experiment we conclude that M. oleifera extract has the potential to ameliorate ethanol-induced liver damage.


Asunto(s)
Hígado Graso , Moringa oleifera , Extractos Vegetales , Animales , Ratones , Antioxidantes/metabolismo , Antioxidantes/farmacología , Etanol/efectos adversos , Hígado Graso/inducido químicamente , Hígado Graso/tratamiento farmacológico , Hígado Graso/metabolismo , Hígado/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo , Extractos Vegetales/farmacología , Triglicéridos/metabolismo
4.
Int J Mol Sci ; 22(8)2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33921050

RESUMEN

Melanoma is known to aggressively metastasize and is one of the prominent causes of skin cancer mortality. This study was designed to assess the molecular mechanism of decursinol angelate (DA) against murine melanoma cell line (B16F10 cells). Treatment of DA resulted in growth inhibition and cell cycle arrest at G0/G1 (p < 0.001) phase, evaluated through immunoblotting. Moreover, autophagy-related proteins such as ATG-5 (p < 0.0001), ATG-7 (p < 0.0001), beclin-1 (p < 0.0001) and transition of LC3-I to LC3-II (p < 0.0001) were markedly decreased, indicating autophagosome inhibition. Additionally, DA treatment triggered apoptotic events which were corroborated by the occurrence of distorted nuclei, elevated reactive oxygen species (ROS) levels and reduction in the mitochondrial membrane potential. Subsequently, there was an increase in the expression of pro-apoptotic protein Bax in a dose-dependent manner, with the corresponding downregulation of Bcl-2 expression and cytochrome C expression following 24 h DA treatment in A375.SM and B16F10 cells. We substantiated our results for apoptotic occurrence through flow cytometry in B16F10 cells. Furthermore, we treated B16F10 cells with N-acetyl-L-cysteine (NAC). NAC treatment upregulated ATG-5 (p < 0.0001), beclin-1 (p < 0.0001) and LC3-I to LC3-II (p < 0.0001) conversion, which was inhibited in the DA treatment group. We also noticed a systematic upregulation of important markers for progression of G1 cell phase such as CDK-2 (p < 0.029), CDK-4 (p < 0.036), cyclin D1 (p < 0.0003) and cyclin E (p < 0.020) upon NAC treatment. In addition, we also observed a significant fold reduction (p < 0.05) in ROS fluorescent intensity and the expression of Bax (p < 0.0001), cytochrome C (p < 0.0001), cleaved caspase-9 (p > 0.010) and cleaved caspase-3 (p < 0.0001). NAC treatment was able to ameliorate DA-induced apoptosis and cell cycle arrest to support our finding. Our in vivo xenograft model also revealed similar findings, such as downregulation of CDK-2 (p < 0.0001) and CDK-4 (p < 0.0142) and upregulation of Bax (p < 0.0001), cytochrome C (p < 0.0001), cleaved caspase 3 (p < 0.0001) and cleaved caspase 9 (p < 0.0001). In summary, our study revealed that DA is an effective treatment against B16F10 melanoma cells and xenograft mice model.


Asunto(s)
Apoptosis , Benzopiranos/farmacología , Butiratos/farmacología , Melanoma/patología , Neoplasias Cutáneas/patología , Acetilcisteína/farmacología , Animales , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Autofagosomas/efectos de los fármacos , Autofagosomas/metabolismo , Benzopiranos/toxicidad , Butiratos/toxicidad , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Humanos , Masculino , Melanoma Experimental/patología , Ratones Endogámicos BALB C , Ratones Desnudos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Membranas Mitocondriales/efectos de los fármacos , Membranas Mitocondriales/metabolismo , Modelos Biológicos , Especies Reactivas de Oxígeno/metabolismo
5.
J Food Biochem ; 45(5): e13713, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33818795

RESUMEN

Alpinia oxyphylla is a widely used medicinal herb for diarrhea, gastralgia, tumors, hypertention, and cerebrovascular disorders. Here, we evaluated the chondroprotective effect of A. oxyphylla dried fruit ethanol extract (AOE) against cartilage degradation in rabbit articular cartilage explants. Treatment of interleukin-1α (IL-1α) and plasminogen increased degraded collagen release in culture supernatants, but pretreatment of AOE (50, 100, 200 µg/ml) inhibited the collagen release in dose-dependent manner. To examine the mechanism of action of AOE on chondroprotection, the level of matrix metalloproteinases-3 (MMP-3), matrix metalloproteinases-13 (MMP-13), tissue inhibitor of metalloprotease-1 (TIMP-1), and inflammatory mediators like prostaglandin E2 (PGE2 ) and nitric oxide (NO) was evaluated. AOE inhibited upregulation of MMP-3 and MMP-13 and downregulation of TIMP-1 and also reduced increase of PGE2 and NO level induced by exposure of IL-1α and plasminogen. These results indicate that AOE show chondroprotective effect through inhibiting collagen degradation via regulating MMPs, TIMP-1, and inflammatory mediators. PRACTICAL APPLICATIONS: Osteoarthritis (OA) is a one of the most common chronic disorders in elderly persons. Because the regenerative power of joint articular cartilage is very low, treatment of OA is difficult to expect complete recovery. Therefore, there is a need to develop a therapeutic agent that can safely and effectively inhibit the cartilage destruction. For the first time, we exhibited the inhibitory effect of AOE on collagen degradation through regulating MMPs and TIMP-1 in articular cartilage explants. These findings support AOE could be used as herbal therapeutic application for protecting articular cartilage to prevent OA.


Asunto(s)
Alpinia , Cartílago Articular , Osteoartritis , Animales , Metaloproteinasas de la Matriz , Osteoartritis/tratamiento farmacológico , Extractos Vegetales/farmacología , Conejos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...