Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
G3 (Bethesda) ; 14(2)2024 Feb 07.
Article En | MEDLINE | ID: mdl-38058125

In vivo genome editing with clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 generates powerful tools to study gene regulation and function. We revised the homology-assisted CRISPR knock-in method to convert Drosophila GAL4 lines to LexA lines using a new universal knock-in donor strain. A balancer chromosome-linked donor strain with both body color (yellow) and eye red fluorescent protein (RFP) expression markers simplified the identification of LexA knock-in using light or fluorescence microscopy. A second balancer chromosome-linked donor strain readily converted the second chromosome-linked GAL4 lines regardless of target location in the cis-chromosome but showed limited success for the third chromosome-linked GAL4 lines. We observed a consistent and robust expression of the yellow transgene in progeny harboring a LexA knock-in at diverse genomic locations. Unexpectedly, the expression of the 3xP3-RFP transgene in the "dual transgene" cassette was significantly increased compared with that of the original single 3xP3-RFP transgene cassette in all tested genomic locations. Using this improved screening approach, we generated 16 novel LexA lines; tissue expression by the derived LexA and originating GAL4 lines was similar or indistinguishable. In collaboration with 2 secondary school classes, we also established a systematic workflow to generate a collection of LexA lines from frequently used GAL4 lines.


Drosophila , Gene Editing , Animals , Gene Editing/methods , Drosophila/genetics , Transgenes , Genome , CRISPR-Cas Systems
2.
G3 (Bethesda) ; 13(9)2023 08 30.
Article En | MEDLINE | ID: mdl-37279923

Conditional gene regulation in Drosophila through binary expression systems like the LexA-LexAop system provides a superb tool for investigating gene and tissue function. To increase the availability of defined LexA enhancer trap insertions, we present molecular, genetic, and tissue expression studies of 301 novel Stan-X LexA enhancer traps derived from mobilization of the index SX4 line. This includes insertions into distinct loci on the X, II, and III chromosomes that were not previously associated with enhancer traps or targeted LexA constructs, an insertion into ptc, and seventeen insertions into natural transposons. A subset of enhancer traps was expressed in CNS neurons known to produce and secrete insulin, an essential regulator of growth, development, and metabolism. Fly lines described here were generated and characterized through studies by students and teachers in an international network of genetics classes at public, independent high schools, and universities serving a diversity of students, including those underrepresented in science. Thus, a unique partnership between secondary schools and university-based programs has produced and characterized novel resources in Drosophila, establishing instructional paradigms devoted to unscripted experimental science.


Drosophila Proteins , Drosophila , Animals , Drosophila/genetics , Drosophila/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Gene Expression Regulation , Enhancer Elements, Genetic
3.
G3 (Bethesda) ; 12(3)2022 03 04.
Article En | MEDLINE | ID: mdl-35100369

Conditional expression of short hairpin RNAs with binary genetic systems is an indispensable tool for studying gene function. Addressing mechanisms underlying cell-cell communication in vivo benefits from simultaneous use of 2 independent gene expression systems. To complement the abundance of existing Gal4/UAS-based resources in Drosophila, we and others have developed LexA/LexAop-based genetic tools. Here, we describe experimental and pedagogical advances that promote the efficient conversion of Drosophila Gal4 lines to LexA lines, and the generation of LexAop-short hairpin RNA lines to suppress gene function. We developed a CRISPR/Cas9-based knock-in system to replace Gal4 coding sequences with LexA, and a LexAop-based short hairpin RNA expression vector to achieve short hairpin RNA-mediated gene silencing. We demonstrate the use of these approaches to achieve targeted genetic loss-of-function in multiple tissues. We also detail our development of secondary school curricula that enable students to create transgenic flies, thereby magnifying the production of well-characterized LexA/LexAop lines for the scientific community. The genetic tools and teaching methods presented here provide LexA/LexAop resources that complement existing resources to study intercellular communication coordinating metazoan physiology and development.


Drosophila Proteins , Drosophila , Animals , Animals, Genetically Modified , Drosophila/genetics , Drosophila/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Humans
...