Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 41
1.
Cell Commun Signal ; 22(1): 323, 2024 Jun 12.
Article En | MEDLINE | ID: mdl-38867259

BACKGROUND: Mesenchymal stem cells (MSCs) are widely used in the development of therapeutic tools in regenerative medicine. However, their quality decreases during in vitro expansion because of heterogeneity and acquired cellular senescence. We investigated the potential role of podoplanin (PDPN) in minimizing cellular senescence and maintaining the stemness of tonsil-derived MSCs (TMSCs). METHODS: TMSCs were isolated from human tonsil tissues using an enzymatic method, expanded, and divided into two groups: early-passaged TMSCs, which were cultured for 3-7 passages, and late-passaged TMSCs, which were passaged more than 15 times. The TMSCs were evaluated for cellular senescence and MSC characteristics, and PDPN-positive and -negative cells were identified by fluorescence-activated cell sorting. In addition, MSC features were assessed in siRNA-mediated PDPN-depleted TMSCs. RESULTS: TMSCs, when passaged more than 15 times and becoming senescent, exhibited reduced proliferative rates, telomere length, pluripotency marker (NANOG, OCT4, and SOX2) expression, and tri-lineage differentiation potential (adipogenesis, chondrogenesis, or osteogenesis) compared to cells passaged less than five times. Furthermore, PDPN protein levels significantly decreased in a passage-dependent manner. PDPN-positive cells maintained their stemness characteristics, such as MSC-specific surface antigen (CD14, CD34, CD45, CD73, CD90, and CD105) and pluripotency marker expression, and exhibited higher tri-lineage differentiation potential than PDPN-negative cells. SiRNA-mediated silencing of PDPN led to decreased cell-cycle progression, proliferation, and migration, indicating the significance of PDPN as a preliminary senescence-related factor. These reductions directly contributed to the induction of cellular senescence via p16Ink4a/Rb pathway activation. CONCLUSION: PDPN may serve as a novel biomarker to mitigate cellular senescence in the clinical application of MSCs.


Cellular Senescence , Cyclin-Dependent Kinase Inhibitor p16 , Membrane Glycoproteins , Mesenchymal Stem Cells , Palatine Tonsil , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Humans , Membrane Glycoproteins/metabolism , Membrane Glycoproteins/genetics , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Cyclin-Dependent Kinase Inhibitor p16/genetics , Palatine Tonsil/cytology , Palatine Tonsil/metabolism , Cell Differentiation , Cell Proliferation , Signal Transduction , Cells, Cultured
2.
ACS Appl Mater Interfaces ; 16(15): 19121-19136, 2024 Apr 17.
Article En | MEDLINE | ID: mdl-38588341

Plate-type hollow black TiO2 (HL/BT) with a high NIR reflectance was fabricated for the first time as a LiDAR-detectable black material. A TiO2 layer was formed on commercial-grade glass by using the sol-gel method to obtain a plate-type structure. The glass template was then etched with hydrofluoric acid to form a hollow structure, and blackness was further achieved through NaBH4 reduction, which altered the oxidation state of TiO2 to black TixO2x-1 or Ti4+ to Ti3+ and Ti2+. The blackness of the HL/BT material was maintained by a novel approach that involved etching prior to reduction. The thickness of the TiO2 layer was controlled to maximize the NIR reflectance when applied as paint. The HL/BT material with a thickness of 140 nm (HL/BT140) showed a blackness (L*) of 13.3 and high NIR reflectance of 23.6% at a wavelength of 905 nm. This is attributed to the effective light reflection at the interface created by the TiO2 layer and the hollow structure. Plate-type HL/BT140 provides excellent spreadability, durability, and thermal stability in practical paint applications compared with sphere-type materials due to the higher contacting area to the applied surface, making it suitable for use as a LiDAR-detectable inorganic black pigment in autonomous environments.

3.
Sci Rep ; 14(1): 9184, 2024 04 22.
Article En | MEDLINE | ID: mdl-38649387

Salivary stones, known as sialoliths, form within the salivary ducts due to abnormal salivary composition and cause painful symptoms, for which surgical removal is the primary treatment. This study explored the role of the salivary microbial communities in the formation of sialoliths. We conducted a comparative analysis of microbial communities present in the saliva and salivary stones, and sequenced the 16S rRNA gene in samples obtained from patients with sialoliths and from healthy individuals. Although the diversity in the saliva was high, the essential features of the microbial environment in sialoliths were low diversity and evenness. The association of microbial abundance between stones and saliva revealed a positive correlation between Peptostreptococcus and Porphyromonas, and a negative correlation for Pseudomonas in saliva. The functional potential differences between saliva and stones Bacterial chemotaxis and the citrate cycle were negatively correlated with most genera found in salivary stone samples. However, the functions required for organic compound degradation did not differ between the saliva samples. Although some microbes were shared between the sialoliths and saliva, their compositions differed significantly. Our study presents a novel comparison between salivary stones and salivary microbiomes, suggesting potential preventive strategies against sialolithiasis.


Microbiota , RNA, Ribosomal, 16S , Saliva , Salivary Gland Calculi , Humans , Saliva/microbiology , Female , Male , RNA, Ribosomal, 16S/genetics , Middle Aged , Adult , Salivary Gland Calculi/microbiology , Aged , Salivary Calculi/microbiology , Peptostreptococcus/isolation & purification , Porphyromonas/isolation & purification , Porphyromonas/genetics
4.
J Colloid Interface Sci ; 657: 373-383, 2024 Mar.
Article En | MEDLINE | ID: mdl-38043239

HYPOTHESIS: Surface modification of dielectric materials changes the dipole-dipole interactions under electric fields, thereby controlling the electrorheological (ER) response. The introduction of metal oxides onto mica templates and further coating of dyes is expected to simultaneously improve the color clarity and ER performance. EXPERIMENTS: Dye-coated TiO2 platelets on mica are synthesized for high-performance colorful ER fluids. A sol-gel method is utilized to grow TiO2 on mica to prepare precursor light-colored mica/TiO2 materials, which are coated with appropriate dyes to enhance the vividness as determined by the Commission Internationale de clairage L*a*b* color system. The color expression and color clarity improvement are explained via the light interference effect and the presence of chromophores. FINDINGS: The uniform TiO2 layers can be obtained under low pH conditions with controlled nucleation kinetics. The addition of dyes to TiO2 increases the surface area and porosity of ER materials and introduces heteroatoms that act as positive factors. In practical ER applications, dye-coated TiO2-based ER fluids exhibit higher ER performances compared with the corresponding light-colored TiO2-based ER fluids. The vivid-colored ER fluids could provide an easy selection for a wide range of rheological systems requiring a specific magnitude of stress by confirming the color.

5.
Gels ; 9(11)2023 Nov 10.
Article En | MEDLINE | ID: mdl-37998981

The use of plate-like materials to induce a percolation gel-like effect in electrorheological (ER) fluids is sparsely documented. Hence, we dispersed plate-like materials, namely natural mica, synthetic mica, and glass, as well as their pulverized particles, in various concentrations in silicone oil to form ER fluids. Subsequently, the rheological properties of the fluids were evaluated and compared to identify the threshold concentration for percolating a gel-like state. The shear stress and viscoelastic moduli under zero-field conditions confirmed that plate-like materials can be used to induce percolation gel-like effects in ER fluids. This is because of the high aspect ratio of the materials, which enhances their physical stability. In practical ER investigations, ER fluids based on synthetic mica (30.0 wt%) showed the highest yield stress of 516.2 Pa under an electric field strength of 3.0 kV mm-1. This was attributed to the formation of large-cluster networks and additional polarization induced by the ions. This study provides a practical approach for developing a new type of gel-like ER fluid.

6.
Materials (Basel) ; 16(19)2023 Sep 28.
Article En | MEDLINE | ID: mdl-37834592

In this study, Al paper and cellulose acetate (CA) filters derived from heated tobacco waste were successfully converted into current collectors and active materials for a supercapacitor device. Typically, heated tobacco contains electrically discontinuous Al paper. First, Al was extracted from the tobacco waste using HCl to produce Lewis acid (AlCl3). This acid was then used in an Al electrodeposition process utilizing the chloroaluminate ionic liquid reaction between the acid and the base (RCl) at room temperature. To enhance the conductivity, a supplementary coating of Al metal was applied to the Al paper through electrodeposition, thus re-establishing the electrical continuity of the discontinuous parts and forming an Al-coated current collector. Moreover, the CA filters were carbonized under a nitrogen atmosphere, yielding carbon precursors (C-CA) for the supercapacitor electrodes. To further enhance the electrochemical performance, nickel oxide (NiO) was incorporated into C-CA, resulting in C-CA@NiO with pseudocapacitance. The specific surface area of CA increased with carbonization and the subsequent incorporation of NiO. The as-synthesized C-CA and C-CA@NiO materials were applied to an Al-coated current collector to obtain C-CA- and C-CA@NiO-based electrodes, exhibiting stable electrochemical behavior in the voltage range of -1.0 to 0 V and 0 to 1.0 V, respectively. An asymmetric supercapacitor (ASC) device was assembled with C-CA@NiO and C-CA as the positive and negative electrodes, respectively. This ASC device demonstrated a high specific capacitance of 40.8 F g-1, while widening the operating voltage window to 2.0 V. The high electrochemical performance of the device is attributed to the successful Al electrodeposition, which facilitates the electrical conductivity and increased porosity of the C-CA@NiO and C-CA materials. To the best of our knowledge, this is a pioneering study in regards to the conversion of biomass waste into current collectors and active materials to fabricate a practical ASC device. Our findings highlight the potential of reusing Al paper and CA filters from heated tobacco waste as essential components of energy storage devices.

7.
Nanomaterials (Basel) ; 13(10)2023 May 11.
Article En | MEDLINE | ID: mdl-37242031

Herein, unique three-dimensional (3D) hierarchically structured carbon nanofiber (CNF)/metal oxide/conducting polymer composite materials were successfully synthesized by combinations of various experimental methods. Firstly, base CNFs were synthesized by carbonization of electrospun PAN/PVP fibers to attain electric double-layer capacitor (EDLC) characteristics. To further enhance the capacitance, tin oxide (SnO2) and iron oxide (Fe2O3) were coated onto the CNFs via facile hydrothermal treatment. Finally, polypyrrole (PPy) was introduced as the outermost layer by a dispersion polymerization method under static condition to obtain 3D-structured CNF/SnO2/PPy and CNF/Fe2O3/PPy materials. With each synthesis step, the morphology and dimension of materials were transformed, which also added the benign characteristic for supercapacitor application. For the practical application, as-synthesized CNF/SnO2/PPy and CNF/Fe2O3/PPy were applied as active materials for supercapacitor electrodes, and superb specific capacitances of 508.1 and 426.8 F g-1 (at 1 A g-1) were obtained (three-electrode system). Furthermore, an asymmetric supercapacitor (ASC) device was assembled using CNF/SnO2/PPy as the positive electrode and CNF/Fe2O3/PPy as the negative electrode. The resulting CNF/SnO2/PPy//CNF/Fe2O3/PPy device exhibited excellent specific capacitance of 101.2 F g-1 (at 1 A g-1). Notably, the ASC device displayed a long-term cyclability (at 2000 cycles) with a retention rate of 81.1%, compared to a CNF/SnO2//CNF/Fe2O3 device of 70.3% without an outermost PPy layer. By introducing the outermost PPy layer, metal oxide detachment from CNFs were prevented to facilitate long-term cyclability of electrodes. Accordingly, this study provides an effective method for manufacturing a high-performance and stable supercapacitor by utilizing unique 3D hierarchical materials, comprised of CNF, metal oxide, and conducting polymer.

8.
Gels ; 9(2)2023 Jan 23.
Article En | MEDLINE | ID: mdl-36826267

In this study, a flexible all-solid-state asymmetric supercapacitor (FASC) device has been successfully fabricated via full recycling of heated tobacco waste (HTW). Tobacco leaves and cellulose acetate tubes have been successfully carbonized (HTW-C) and mixed with metal oxides (MnO2 and Fe3O4) to obtain highly active materials for supercapacitors. Moreover, poly(lactic acid) (PLA) filters have been successfully dissolved in an organic solvent and mixed with the as-prepared active materials using a simple paste mixing method. In addition, flexible MnO2- and Fe3O4-mixed HTW-C/PLA electrodes (C-MnO2/PLA and C-Fe3O4/PLA) have been successfully fabricated using the drop-casting method. The as-synthesized flexible C-MnO2/PLA and C-Fe3O4/PLA electrodes have exhibited excellent electrical conductivity of 378 and 660 µS cm-1, and high specific capacitance of 34.8 and 47.9 mF cm-2 at 1 mA cm-2, respectively. A practical FASC device (C-MnO2/PLA//C-Fe3O4/PLA) has been assembled by employing the C-MnO2/PLA as the positive electrode and C-Fe3O4/PLA as the negative electrode. The as-prepared FASC device showed a remarkable capacitance of 5.80 mF cm-2 at 1 mA cm-2. Additionally, the FASC device manifests stable electrochemical performance under harsh bending conditions, verifying the superb flexibility and sustainability of the device. To the best of our knowledge, this is the first study to report complete recycling of heated tobacco waste to prepare the practical FASC devices. With excellent electrochemical performance, the experiments described in this study successfully demonstrate the possibility of recycling new types of biomass in the future.

9.
Cells ; 13(1)2023 12 27.
Article En | MEDLINE | ID: mdl-38201259

BACKGROUND: The lack of appropriate mesenchymal stem cells (MSCs) selection methods has given the challenges for standardized harvesting, processing, and phenotyping procedures of MSCs. Genetic engineering coupled with high-throughput proteomic studies of MSC surface markers arises as a promising strategy to identify stem cell-specific markers. However, the technical limitations are the key factors making it less suitable to provide an appropriate starting material for the screening platform. A more accurate, easily accessible approach is required to solve the issues. METHODS: This study established a high-throughput screening strategy with forward versus side scatter gating to identify the adipogenesis-associated markers of bone marrow-derived MSCs (BMSCs) and tonsil-derived MSCs (TMSCs). We classified the MSC-derived adipogenic differentiated cells into two clusters: lipid-rich cells as side scatter (SSC)-high population and lipid-poor cells as SSC-low population. By screening the expression of 242 cell surface proteins, we identified the surface markers which exclusively found in lipid-rich subpopulation as the specific markers for BMSCs and TMSCs. RESULTS: High-throughput screening of the expression of 242 cell surface proteins indicated that CD49f and CD146 were specific for BMSCs and TMSCs. Subsequent immunostaining confirmed the consistent specific expression of CD49f and CD146 and in BMSCs and TMSCs. Enrichment of MSCs by CD49f and CD146 surface markers demonstrated that the simultaneous expression of CD49f and CD146 is required for adipogenesis and osteogenesis of mesenchymal stem cells. Furthermore, the fate decision of MSCs from different sources is regulated by distinct responses of cells to differentiation stimulations despite sharing a common CD49f+CD146+ immunophenotype. CONCLUSIONS: We established an accurate, robust, transgene-free method for screening adipogenesis associated cell surface proteins. This provided a valuable tool to investigate MSC-specific markers. Additionally, we showed a possible crosstalk between CD49f and CD146 modulates the adipogenesis of MSCs.


Adipogenesis , Mesenchymal Stem Cells , CD146 Antigen , Integrin alpha6 , Proteomics , Membrane Proteins , Lipids
10.
Nanomaterials (Basel) ; 12(20)2022 Oct 20.
Article En | MEDLINE | ID: mdl-36296878

Light detection and ranging (LiDAR) sensors utilize a near-infrared (NIR) laser with a wavelength of 905 nm. However, LiDAR sensors have weakness in detecting black or dark-tone materials with light-absorbing properties. In this study, SiO2/black TiO2 core/shell nanoparticles (SBT CSNs) were designed as LiDAR-detectable black materials. The SBT CSNs, with sizes of 140, 170, and 200 nm, were fabricated by a series of Stöber, TTIP sol-gel, and modified NaBH4 reduction methods. These SBT CSNs are detectable by a LiDAR sensor and, owing to their core/shell structure with intrapores on the shell (ca. 2−6 nm), they can effectively function as both color and NIR-reflective materials. Moreover, the LiDAR-detectable SBT CSNs exhibited high NIR reflectance (28.2 R%) in a monolayer system and true blackness (L* < 20), along with ecofriendliness and hydrophilicity, making them highly suitable for use in autonomous vehicles.

11.
Nanomaterials (Basel) ; 12(18)2022 Sep 08.
Article En | MEDLINE | ID: mdl-36144903

Herein, the electrorheological (ER) performances of ER fluids were correlated with their colors to allow for the visual selection of the appropriate fluid for a specific application using naked eyes. A series of TiO2-coated synthetic mica materials colored white, yellow, red, violet, blue, and green (referred to as color mica/TiO2 materials) were fabricated via a facile sol-gel method. The colors were controlled by varying the thickness of the TiO2 coating layer, as the coatings with different thicknesses exhibited different light interference effects. The synthesized color mica/TiO2 materials were mixed with silicone oil to prepare colored ER fluids. The ER performances of the fluids decreased with increasing thickness of the TiO2 layer in the order of white, yellow, red, violet, blue, and green materials. The ER performance of differently colored ER fluids was also affected by the electrical conductivity, dispersion stability, and concentrations of Na+ and Ca2+ ions. This pioneering study may provide a practical strategy for developing new ER fluid systems in future.

12.
Biomedicines ; 10(2)2022 Feb 14.
Article En | MEDLINE | ID: mdl-35203648

Hypoparathyroidism is an endocrine disorder that occurs because of the inability to produce parathyroid hormone (PTH) effectively. Previously, we reported the efficacy of tonsil-derived mesenchymal stem cells (TMSCs) differentiated into parathyroid-like cells for the treatment of hypoparathyroidism. Here, we investigated the feasibility of three-dimensional structural microbeads fabricated with TMSCs and alginate, a natural biodegradable polymer, to treat hypoparathyroidism. Alginate microbeads were fabricated by dropping a 2% (w/v) alginate solution containing TMSCs into a 5% CaCl2 solution and then differentiated into parathyroid-like cells using activin A and sonic hedgehog for 7 days. The protein expression of PTH, a specific marker of the parathyroid gland, was significantly higher in differentiated alginate microbeads with TMSCs (Al-dT) compared with in undifferentiated alginate microbeads with TMSCs. For in vivo experiments, we created the hypoparathyroidism animal model by parathyroidectomy (PTX) and implanted alginate microbeads in the dorsal interscapular region. The PTX rats with Al-dT (PTX+Al-dT) showed the highest survival rate and weight change and a gradual increase in serum intact PTH levels. We also detected a higher expression of PTH in retrieved tissues of PTX+Al-dT using immunofluorescence analysis. This study demonstrates that alginate microbeads are potential a new tool as a surgically scalable therapy for treating hypoparathyroidism.

13.
Cells ; 11(3)2022 02 03.
Article En | MEDLINE | ID: mdl-35159343

Our previous study found that the level of CCN1 increases as osteogenic differentiation progresses in tonsil-derived mesenchymal stem cells (TMSCs). This study investigated how CCN1 is regulated through HDAC inhibition in TMSCs and their relationship with osteogenesis. Valproic acid (VPA) (1-5 mM), a well-known histone deacetylase (HDAC) inhibitor, strongly inhibited TMSC proliferation without altering MSC-specific surface markers, CD14, 34, 45, 73, 90 and 105. However, CD146 expression increased at 5 mM VPA. VPA increased osteogenic differentiation of TMSCs but decreased adipogenesis and chondrogenesis, as evidenced by the cell-specific staining of differentiation. The former was validated by the increased osteocalcin (OCN). The changes in CCN1 by VPA was biphasic; it increased until 48 h and decreased thereafter. Knockdown of CCN1 by using siRNA inhibited the osteogenic effect of VPA. VPA had no effect on CCN1 mRNA expression, but inhibition of protein synthesis by cycloheximide showed that VPA slowed down the CCN1 protein degradation. Moreover, overexpression of HDAC1 completely inhibited VPA-induced CCN1. Our results indicate that VPA inhibits the HDAC1, inducing CCN1 protein stability rather than gene expression, thereby promoting osteogenic differentiation of TMSCs. These findings present the noble implication of VPA as an inhibitor of HDAC1 to facilitate CCN1-induced osteogenic differentiation of MSCs.


Mesenchymal Stem Cells , Osteogenesis , Cysteine-Rich Protein 61/metabolism , Histone Deacetylase Inhibitors/pharmacology , Mesenchymal Stem Cells/metabolism , Palatine Tonsil , Protein Stability , Valproic Acid/metabolism , Valproic Acid/pharmacology
14.
Int J Mol Sci ; 23(2)2022 Jan 10.
Article En | MEDLINE | ID: mdl-35054901

Mesenchymal stem cells (MSCs) can differentiate into endoderm lineages, especially parathyroid-hormone (PTH)-releasing cells. We have previously reported that tonsil-derived MSC (T-MSC) can differentiate into PTH-releasing cells (T-MSC-PTHCs), which restored the parathyroid functions in parathyroidectomy (PTX) rats. In this study, we demonstrate quality optimization by standardizing the differentiation rate for a better clinical application of T-MSC-PTHCs to overcome donor-dependent variation of T-MSCs. Quantitation results of PTH mRNA copy number in the differentiated cells and the PTH concentration in the conditioned medium confirmed that the differentiation efficiency largely varied depending on the cells from each donor. In addition, the differentiation rate of the cells from all the donors greatly improved when differentiation was started at a high cell density (100% confluence). The large-scale expression profiling of T-MSC-PTHCs by RNA sequencing indicated that those genes involved in exiting the differentiation and the cell cycle were the major pathways for the differentiation of T-MSC-PTHCs. Furthermore, the implantation of the T-MSC-PTHCs, which were differentiated at a high cell density embedded in hyaluronic acid, resulted in a higher serum PTH in the PTX model. This standardized efficiency of differentiation into PTHC was achieved by initiating differentiation at a high cell density. Our findings provide a potential solution to overcome the limitations due to donor-dependent variation by establishing a standardized differentiation protocol for the clinical application of T-MSC therapy in treating hypoparathyroidism.


Cell Differentiation , Mesenchymal Stem Cells/metabolism , Palatine Tonsil/cytology , Parathyroid Hormone/biosynthesis , Biomarkers , Calcium/metabolism , Cell Culture Techniques , Cells, Cultured , Contact Inhibition , Extracellular Space/metabolism , Gene Expression Profiling , Gene Regulatory Networks , High-Throughput Nucleotide Sequencing , Humans , Mesenchymal Stem Cells/cytology
15.
Stem Cell Res ; 53: 102291, 2021 05.
Article En | MEDLINE | ID: mdl-33780730

AIMS: Far-infrared (FIR) irradiation inhibits adipogenic differentiation of tonsil-derived mesenchymal stem cells (TMSCs) by activating Ca2+-dependent protein phosphatase 2B (PP2B), but it stimulates osteogenic differentiation in a PP2B-independent pathway. We investigated the potential involvement of transient receptor potential vanilloid (TRPV) channels, a well-known Ca2+-permeable channel, in the effects of FIR irradiation on adipogenic or osteogenic differentiation of TMSCs. METHODS: TMSCs, in the absence or presence of activators or inhibitors, were exposed to FIR irradiation followed by adipogenic or osteogenic differentiation, which was assessed using Oil red O or Alizarin red S staining, respectively. RT-PCR, qRT-PCR, and Western blotting were used to determine gene and protein expression of calcium channels and adipocyte-specific markers. RESULTS: Treatment with the calcium ionophore ionomycin simulated the inhibitory effect of FIR irradiation on adipogenic differentiation but had no effect on osteogenic differentiation, indicating the involvement of intracellular Ca2+ in adipogenic differentiation. Inhibition of pan-TRP channels using ruthenium red reversed the FIR irradiation-induced inhibition of adipogenic differentiation. Among the TRP channels tested, inhibition of the TRPV2 channel by tranilast or siRNA against TRPV2 attenuated the inhibitory effect of FIR irradiation on adipogenic differentiation, accompanied by a decrease in intracellular Ca2+ levels. By contrast, activation of the TRPV2 channel by probenecid simulated FIR irradiation-induced inhibition of adipogenic differentiation. Expectedly, the stimulatory effect of FIR irradiation on osteogenic differentiation was independent of the TRPV2 channel. CONCLUSION: Our data demonstrate that the TRPV2 channel is a sensor/receptor for the inhibited adipogenic differentiation of TMSCs associated with FIR irradiation.


Mesenchymal Stem Cells , Adipogenesis , Cell Differentiation , Osteogenesis , Palatine Tonsil
16.
Tissue Eng Regen Med ; 17(4): 433-443, 2020 08.
Article En | MEDLINE | ID: mdl-32390116

BACKGROUND: Respiratory mucosa defects result in airway obstruction and infection, requiring subsequent functional recovery of the respiratory epithelium. Because site-specific extracellular matrix (ECM) facilitates restoration of organ function by promoting cellular migration and engraftment, previous studies considered decellularized trachea an ideal ECM; however, incomplete cell removal from cartilage and mucosal-architecture destruction are frequently reported. Here, we developed a decellularization protocol and applied it to the respiratory mucosa of separated porcine tracheas. METHODS: The trachea was divided into groups according to decellularization protocol: native mucosa, freezing-thawing (FT), FT followed by the use of Perasafe-based chemical agents before mucosal separation (wFTP), after mucosal separation (mFTP), and followed by DNase decellularization (mFTD). Decellularization efficacy was evaluated by DNA quantification and hematoxylin and eosin staining, and ECM content of the scaffold was evaluated by histologic analysis and glycosaminoglycan and collagen assays. Biocompatibility was assessed by cell-viability assay and in vivo transplantation. RESULTS: The mFTP mucosa showed low antigenicity and maintained the ECM to form a proper microstructure. Additionally, tonsil-derived stem cells remained viable when cultured with or seeded onto mFTP mucosa, and the in vivo host response showed a constructive pattern following implantation of the mFTP scaffolds. CONCLUSION: These results demonstrated that xenogenic acellular respiratory mucosa matrix displayed suitable biocompatibility as a scaffold material for respiratory mucosa engineering.


Tissue Scaffolds , Trachea , Animals , Extracellular Matrix , Respiratory Mucosa , Swine , Tissue Engineering , Trachea/surgery
17.
Laryngoscope ; 130(2): 358-366, 2020 02.
Article En | MEDLINE | ID: mdl-30861134

OBJECTIVE: In this study, we assessed the effectiveness of a tonsil-derived mesenchymal stem cell (TMSC)-transplanted polycaprolactone/beta-tricalcium phosphate prosthesis (specifically designed for easier fixing and grafting with a single scaffold) on rabbit mandible osteogenesis. METHODS: The mandibles of 18 rabbits were exposed, and 10 × 8-mm bone defects were made. Two rabbits did not receive implants; four were reconstructed with the scaffold control (SC) (SC group); four were reconstructed with scaffolds soaked in peripheral blood (PB) (PB group); four were reconstructed with TMSC-transplanted scaffolds (TMSC group); and four were reconstructed with differentiated osteocyte-transplanted scaffolds (DOC) (DOC group). Each rabbit was sacrificed 12 weeks after surgery, and the area of new bone formation was investigated by mechanical testing, histology, and micro-computed tomography. RESULTS: More extended and denser new bone masses were observed in the TMSC and DOC groups, although fibrosis and vascular formation levels were similar in all groups, suggesting that the dual-structured scaffold alone provides a good environment for bone attachment and regeneration. The bone volumes of representative scaffolds from the SC, PB, TMSC, and DOC groups were 43.12, 48.35, 53.10, and 57.44% of the total volumes, respectively. CONCLUSION: The design of the scaffold resulted in effective osteogenesis, and TMSCs showed osteogenic potency, indicating that their combination could enable effective bone regeneration. LEVEL OF EVIDENCE: NA Laryngoscope, 130:358-366, 2020.


Calcium Phosphates/chemistry , Mandibular Prosthesis , Polyesters/chemistry , Printing, Three-Dimensional , Animals , Compressive Strength , Male , Mesenchymal Stem Cell Transplantation , Osteocytes/transplantation , Osteogenesis , Pilot Projects , Prosthesis Design , Prosthesis Fitting , Rabbits , Tissue Scaffolds , X-Ray Microtomography
19.
Tissue Eng Regen Med ; 16(6): 631-643, 2019 12.
Article En | MEDLINE | ID: mdl-31824825

Background: Stem cell engineering is appealing consideration for regenerating damaged endothelial cells (ECs) because stem cells can differentiate into EC-like cells. In this study, we demonstrate that tonsil-derived mesenchymal stem cells (TMSCs) can differentiate into EC-like cells under optimal physiochemical microenvironments. Methods: TMSCs were preconditioned with Dulbecco's Modified Eagle Medium (DMEM) or EC growth medium (EGM) for 4 days and then replating them on Matrigel to observe the formation of a capillary-like network under light microscope. Microarray, quantitative real time polymerase chain reaction, Western blotting and immunofluorescence analyses were used to evaluate the expression of gene and protein of EC-related markers. Results: Preconditioning TMSCs in EGM for 4 days and then replating them on Matrigel induced the formation of a capillary-like network in 3 h, but TMSCs preconditioned with DMEM did not form such a network. Genome analyses confirmed that EGM preconditioning significantly affected the expression of genes related to angiogenesis, blood vessel morphogenesis and development, and vascular development. Western blot analyses revealed that EGM preconditioning with gelatin coating induced the expression of endothelial nitric oxide synthase (eNOS), a mature EC-specific marker, as well as phosphorylated Akt at serine 473, a signaling molecule related to eNOS activation. Gelatin-coating during EGM preconditioning further enhanced the stability of the capillary-like network, and also resulted in the network more closely resembled to those observed in human umbilical vein endothelial cells. Conclusion: This study suggests that under specific conditions, i.e., EGM preconditioning with gelatin coating for 4 days followed by Matrigel, TMSCs could be a source of generating endothelial cells for treating vascular dysfunction.


Cell Differentiation , Cell Differentiation/drug effects , Cells, Cultured , Collagen/chemistry , Culture Media, Conditioned/pharmacology , Drug Combinations , Gelatin/chemistry , Gene Expression Regulation/drug effects , Human Umbilical Vein Endothelial Cells , Humans , Laminin/chemistry , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Nitric Oxide Synthase Type III/genetics , Nitric Oxide Synthase Type III/metabolism , Palatine Tonsil/cytology , Phosphorylation , Proteoglycans/chemistry , Proto-Oncogene Proteins c-akt/metabolism , Vascular Endothelial Growth Factor A/pharmacology
20.
Stem Cells ; 37(10): 1252-1260, 2019 10.
Article En | MEDLINE | ID: mdl-31287931

Since the discovery of stem cells and multipotency characteristics of mesenchymal stem cells (MSCs), there has been tremendous development in regenerative medicine. MSCs derived from bone marrow have been widely used in various research applications, yet there are limitations such as invasiveness of obtaining samples, low yield and proliferation rate, and questions regarding their practicality in clinical applications. Some have suggested that MSCs from other sources, specifically those derived from palatine tonsil tissues, that is, tonsil-derived MSCs (TMSCs), could be considered as a new potential therapeutic tool in regenerative medicine due to their superior proliferation rate and differentiation capabilities with low immunogenicity and ease of obtaining. Several studies have determined that TMSCs have differentiation potential not only into the mesodermal lineage but also into the endodermal as well as ectodermal lineages, expanding their potential usage and placing them as an appealing option to consider for future studies in regenerative medicine. In this review, the differentiation capacities of TMSCs and their therapeutic competencies from past studies are addressed. Stem Cells 2019;37:1252-1260.


Mesenchymal Stem Cells/metabolism , Palatine Tonsil/metabolism , Regenerative Medicine/methods , Tissue Engineering/methods , Humans , Palatine Tonsil/cytology
...