Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Diagnostics (Basel) ; 14(6)2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38535012

RESUMEN

While the adoption of wireless capsule endoscopy (WCE) has been steadily increasing, its primary application remains limited to observing the small intestine, with relatively less application in the upper gastrointestinal tract. However, there is a growing anticipation that advancements in capsule endoscopy technology will lead to a significant increase in its application in upper gastrointestinal examinations. This study addresses the underexplored domain of landmark identification within the upper gastrointestinal tract using WCE, acknowledging the limited research and public datasets available in this emerging field. To contribute to the future development of WCE for gastroscopy, a novel approach is proposed. Utilizing color transfer techniques, a simulated WCE dataset tailored for the upper gastrointestinal tract is created. Using Euclidean distance measurements, the similarity between this color-transferred dataset and authentic WCE images is verified. Pioneering the exploration of anatomical landmark classification with WCE data, this study integrates similarity evaluation with image preprocessing and deep learning techniques, specifically employing the DenseNet169 model. As a result, utilizing the color-transferred dataset achieves an anatomical landmark classification accuracy exceeding 90% in the upper gastrointestinal tract. Furthermore, the application of sharpen and detail filters demonstrates an increase in classification accuracy from 91.32% to 94.06%.

2.
Nanoscale ; 12(42): 21695-21702, 2020 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-33089840

RESUMEN

Though halide perovskite nanocrystal (PeNC) based blue light emitting devices have been improved in the last few years, and the reasons for the improvements have been successfully explained, the origin of the narrow emission spectra of PeNCs have not been studied much. Here, the factors that affect the width of the emission spectra of PeNCs are analyzed with controlled synthesis and surface passivation treatment. The overall spectra are governed by the size of PeNCs; however, the width could be narrowed by surface passivation treatment. The anion passivation effect of the surface passivation improved most of optoelectronic properties, but had less effect on the emission spectra width. The narrower emission spectra of PeNCs are obtained by ligand passivation effect of the surface passivation. Light emitting devices with enhanced optoelectronic properties are successfully fabricated and narrow (0.094 eV, 16.72 nm) blue electroluminescence emission spectra (∼470 nm) are obtained.

3.
ACS Appl Mater Interfaces ; 12(28): 31582-31590, 2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-32564589

RESUMEN

Inorganic lead halide perovskite nanocrystals (PeNCs) have intensively drawn attention as efficient light-emitting materials for optoelectronic applications due to their fine optoelectronic properties with a high photoluminescence quantum yield and easily tunable saturated emission color. However, the poor stability of the red-emitting PeNCs has become an obstacle because of the uncontrollable iodine substitution from the PeNCs due to weak Pb-I bonding. In this work, we have demonstrated a ligand-mediated post-treatment (LMPT) method using a halide ion-pair ligand, tridodecylmethyl ammonium iodide (TrDAI), for the air stable and high-quality red-emitting PeNCs. Through the LMPT method, the optoelectronic properties of red-emitting PeNCs are dramatically improved resulting in a PLQY of 88.7% at 637 ± 2 nm emission with an increased carrier lifetime from 20.77 to 31.52 ns. We achieve highly efficient red perovskite light-emitting diodes exhibiting a maximum current efficiency of 7.69 cd A-1 and an external quantum efficiency of 6.36% at 637 ± 2 nm electroluminescence emission with a sharp full-width at half maximum of 31 nm.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...