Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
1.
Aging Cell ; : e14231, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38952076

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative disorder associated with behavioral and cognitive impairments. Unfortunately, the drugs the Food and Drug Administration currently approved for AD have shown low effectiveness in delaying the progression of the disease. The focus has shifted to non-pharmacological interventions (NPIs) because of the challenges associated with pharmacological treatments for AD. One such intervention is environmental enrichment (EE), which has been reported to restore cognitive decline associated with AD effectively. However, the therapeutic mechanisms by which EE improves symptoms associated with AD remain unclear. Therefore, this study aimed to reveal the mechanisms underlying the alleviating effects of EE on AD symptoms using histological, proteomic, and neurotransmitter-related analyses. Wild-type (WT) and 5XFAD mice were maintained in standard housing or EE conditions for 4 weeks. First, we confirmed the mitigating effects of EE on cognitive impairment in an AD animal model. Then, histological analysis revealed that EE reduced Aß accumulation, neuroinflammation, neuronal death, and synaptic loss in the AD brain. Moreover, proteomic analysis by liquid chromatography-tandem mass spectrometry showed that EE enhanced synapse- and neurotransmitter-related networks and upregulated synapse- and neurotransmitter-related proteins in the AD brain. Furthermore, neurotransmitter-related analyses showed an increase in acetylcholine and serotonin concentrations as well as a decrease in polyamine concentration in the frontal cortex and hippocampus of 5XFAD mice raised under EE conditions. Our findings demonstrate that EE restores cognitive impairment by alleviating AD pathology and regulating synapse-related proteins and neurotransmitters. Our study provided neurological evidence for the application of NPIs in treating AD.

2.
Bioengineering (Basel) ; 11(6)2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38927796

RESUMEN

Motion capture (MoCap) technology, essential for biomechanics and motion analysis, faces challenges from data loss due to occlusions and technical issues. Traditional recovery methods, based on inter-marker relationships or independent marker treatment, have limitations. This study introduces a novel U-net-inspired bi-directional long short-term memory (U-Bi-LSTM) autoencoder-based technique for recovering missing MoCap data across multi-camera setups. Leveraging multi-camera and triangulated 3D data, this method employs a sophisticated U-shaped deep learning structure with an adaptive Huber regression layer, enhancing outlier robustness and minimizing reconstruction errors, proving particularly beneficial for long-term data loss scenarios. Our approach surpasses traditional piecewise cubic spline and state-of-the-art sparse low rank methods, demonstrating statistically significant improvements in reconstruction error across various gap lengths and numbers. This research not only advances the technical capabilities of MoCap systems but also enriches the analytical tools available for biomechanical research, offering new possibilities for enhancing athletic performance, optimizing rehabilitation protocols, and developing personalized treatment plans based on precise biomechanical data.

3.
Plants (Basel) ; 13(11)2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38891246

RESUMEN

Elaeocarpus sylvestris var. ellipticus (ES), which our research group had confirmed inhibits influenza A and SARS-CoV-2 viruses, was investigated to identify new potent and selective inhibitors of herpes simplex virus-1 (HSV-1) replication. To clarify the optimal condition for ES extract (ESE), ES was extracted at different concentrations of 0, 30, 50, 70, and 100%, to screen for its anti-HSV-1 effect. Among these ESE samples, ESE50 (50% concentration) exhibited the strongest inhibition of HSV-1 replication (EC50 23.2 µg/mL) while showing low cytotoxicity on host cells (IC50 342.8 µg/mL). The treatment of ESE50 clearly demonstrated a decrease in the expression of ICP0 in the lungs of HSV-1-infected BALB/c nude mice, compared to the MOCK group. Geraniin, which was isolated from ESE50 and analyzed using ESI-MS and 1D-(1H- and 13C-) and 2D-NMR, showed greater potency in inhibiting HSV-1 replication, as determined by the plaque reduction assay (EC50 8.3 µg/mL) and luciferase inhibition (EC50 36.9 µg/mL). The results demonstrate that ESE50 and geraniin show great potential as candidates for new drug discovery in the treatment of HSV-1 and related diseases.

4.
Plants (Basel) ; 13(10)2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38794376

RESUMEN

Cnidium monnieri fructus is widely used in traditional Oriental medicine for treating female genital disorders, male impotence, frigidity, and skin-related conditions in East Asia. However, the role of C. monnieri fructus extract (CMFE) in melanin synthesis is not well elucidated. This study aimed to investigate the anti-melanogenesis effect and mechanism of action of CMFE in α-MSH-stimulated B16F10 cells. Intracellular melanin content and tyrosinase activity were measured in α-MSH-stimulated B16F10 cells treated with various concentrations of CMFE (0.5-5 µg/mL). mRNA and protein levels of tyrosinase and MITF were evaluated using qRT-PCR and ting. CMFE's effect on the proteasomal degradation of tyrosinase was confirmed using a proteasomal degradation inhibitor, MG132. CMFE treatment activated p38, a protein associated with proteasomal degradation. Treatment with CMFE at up to 5 µg/mL showed no significant cytotoxicity. CMFE significantly reduced α-MSH-stimulated melanin production (43.29 ± 3.55% decrease, p < 0.05) and cellular tyrosinase activity (31.14 ± 3.15% decrease, p < 0.05). Although mRNA levels of MITF and tyrosinase increased, CMFE suppressed tyrosinase protein levels. The suppressive effect of CMFE on tyrosinase protein was blocked by MG132. CMFE inhibited melanogenesis by promoting the proteasome degradation of tyrosinase through p38 activation. These findings suggest that CMFE has the potential to be a natural whitening agent for inhibiting melanogenesis.

5.
AMB Express ; 14(1): 30, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38491208

RESUMEN

This study aimed to identify substances including Lactobacillus rhamnosus vitaP1 (KACC 92054P) that alleviate hangover-induced emotional anxiety and liver damage. The association between emotional anxiety caused by hangover and the genes P2X4, P2X7, SLC6A4 was investigated. In vitro and in vivo analyses were conducted to assess the influence of free-panica on alcohol-induced upregulated gene expression. Additionally, the concentration of AST, ALT, alcohol, and acetaldehyde in blood was measured. Free-panica, consisting of five natural products (Phyllanthus amarus, Phoenix dactylifera, Vitis vinifera, Zingiber officinale, and Lactobacillus rhamnosus), were evaluated for their regulatory effects on genes involved in alcohol-induced emotional anxiety and liver damage. The combination of these natural products in free-panica successfully restored emotional anxiety, and the concentration of AST, ALT, alcohol, and acetaldehyde in blood to those of the normal control group. These findings support the potential development of free-panica as a health functional food or medicinal intervention for relieving hangover symptoms and protecting liver from alcohol consumption.

6.
Int J Mol Sci ; 25(5)2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38474229

RESUMEN

The prevalence of metabolic syndrome is increasing globally due to behavioral and environmental changes. There are many therapeutic agents available for the treatment of chronic metabolic diseases, such as obesity and diabetes, but the data on their efficacy and safety are lacking. Through a pilot study by our group, Zingiber officinale rhizomes used as a spice and functional food were selected as an anti-obesity candidate. In this study, steam-processed ginger extract (GGE) was used and we compared its efficacy at alleviating metabolic syndrome-related symptoms with that of conventional ginger extract (GE). Compared with GE, GGE (25-100 µg/mL) had an increased antioxidant capacity and α-glucosidase inhibitory activity in vitro. GGE was better at suppressing the differentiation of 3T3-L1 adipocytes and lipid accumulation in HepG2 cells and promoting glucose utilization in C2C12 cells than GE. In 16-week high-fat-diet (HFD)-fed mice, GGE (100 and 200 mg/kg) improved biochemical profiles, including lipid status and liver function, to a greater extent than GE (200 mg/kg). The supplementation of HFD-fed mice with GGE (200 mg/kg) resulted in the downregulation of SREBP-1c and FAS gene expression in the liver. Collectively, our results indicate that GGE is a promising therapeutic for the treatment of obesity and metabolic syndrome.


Asunto(s)
Fármacos Antiobesidad , Síndrome Metabólico , Zingiber officinale , Ratones , Animales , Vapor , Síndrome Metabólico/tratamiento farmacológico , Proyectos Piloto , Tejido Adiposo/metabolismo , Obesidad/metabolismo , Extractos Vegetales/farmacología , Dieta Alta en Grasa , Fármacos Antiobesidad/farmacología , Lípidos/farmacología , Ratones Endogámicos C57BL , Células 3T3-L1 , Adipogénesis
7.
Life (Basel) ; 14(2)2024 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-38398785

RESUMEN

BACKGROUND: Lung cancer is the predominant cause of cancer-related fatalities. This prompted our exploration into the anti-lung cancer efficacy of Labisia pumila, a species meticulously selected from the preliminary screening of 600 plants. METHODS: Through the strategic implementation of activity-guided fractionation, ardisiacrispin A (1) was isolated utilizing sequential column chromatography. Structural characterization was achieved employing various spectroscopic methods, including nuclear magnetic resonance (NMR), mass spectrometry (MS), and infrared spectroscopy (IR). RESULTS: L. pumila 70% EtOH extract showed significant toxicity in A549 lung cancer cells, with an IC50 value of 57.04 ± 10.28 µg/mL, as well as decreased expression of oncogenes and induced apoptosis. Compound 1, ardisiacrispin A, induced a 50% cell death response in A549 cells at a concentration of 11.94 ± 1.14 µg/mL. CONCLUSIONS: The present study successfully investigated ardisiacrispin A extracted from L. pumila leaves, employing a comprehensive spectroscopic approach encompassing NMR, IR, and MS analyses. The anti-lung cancer efficacy of ardisiacrispin A and L. pumila extract was successfully demonstrated for the first time, to the best of our knowledge.

8.
Ann Biomed Eng ; 52(2): 414-424, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37957528

RESUMEN

The impact of aortic valve stenosis (AS) extends beyond the vicinity of the narrowed leaflets into the left ventricle (LV) and into the systemic vasculature because of highly unpredictable valve behavior and complex blood flow in the ascending aorta that can be attributed to the strong interaction between the narrowed cusps and the ejected blood. These effects can become exacerbated during exercise and may have implications for disease progression, accurate diagnosis, and timing of intervention. In this 3-D patient-specific study, we employ strongly coupled fluid-structure interaction (FSI) modeling to perform a comprehensive biomechanical evaluation of systolic ejection dynamics in a stenosed aortic valve (AV) during increasing LV contraction. Our model predictions reveal that the heterogeneous ∆P vs. Q relationship that was observed in our previous clinical study can be attributed to a non-linear increase (by ~ 1.5-fold) in aortic valve area as LV heart rate increases from 70 to 115 bpm. Furthermore, our results show that even for a moderately stenotic valve, increased LV contraction during exercise can lead to high-velocity flow turbulence (Re = 11,700) in the aorta similar to that encountered with a severely stenotic valve (Re ~ 10,000), with concomitant greater viscous loss (~3-fold increase) and elevated wall stress in the ascending aorta. Our FSI predictions also reveal that individual valve cusps undergo distinct and highly non-linear increases (>100%) in stress during exercise, potentially contributing to progressive calcification. Such quantitative biomechanical evaluations from realistic FSI workflows provide insights into disease progression and can be integrated with current stress testing for AS patients to comprehensively predict hemodynamics and valve function under both baseline and exercise conditions.


Asunto(s)
Estenosis de la Válvula Aórtica , Válvula Aórtica , Humanos , Prueba de Esfuerzo , Hemodinámica/fisiología , Modelos Cardiovasculares , Progresión de la Enfermedad
9.
Pharmaceutics ; 15(9)2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37765257

RESUMEN

We have conducted a stability study of a complex liposomal pharmaceutical product, Atheroglitatide (AGT), stored at three temperatures, 4, 24, and 37 °C, for up to six months. The six parameters measured were functions of liposomal integrity (size and number), drug payload (loading efficiency), targeting peptide integrity (conjugation efficiency and specific avidity), and echogenicity (ultrasound-dependent controlled drug release), which were considered most relevant to the product's intended use. At 4 °C, liposome diameter trended upward, indicative of aggregation, while liposome number per mg lipid and echogenicity trended downward. At 24 °C, peptide conjugation efficiency (CE) and targeting efficiency (TE, specific avidity) trended downward. At 37 °C, CE and drug (pioglitazone) loading efficiency trended downward. At 4 °C, the intended storage temperature, echogenicity, and liposome size reached their practical tolerance limits at 6 months, fixing the product expiration at that point. Arrhenius analysis of targeting peptide CE and drug loading efficiency decay at the higher temperatures indicated complete stability of these characteristics at 4 °C. The results of this study underscore the storage stability challenges presented by complex nanopharmaceutical formulations.

10.
J Craniofac Surg ; 34(8): 2336-2342, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37622568

RESUMEN

Accurate cephalometric landmark detection leads to accurate analysis, diagnosis, and surgical planning. Many studies on automated landmark detection have been conducted, however reinforcement learning-based networks have not yet been applied. This is the first study to apply deep Q-network (DQN) and double deep Q-network (DDQN) to automated cephalometric landmark detection to the best of our knowledge. The performance of the DQN-based network for cephalometric landmark detection was evaluated using the IEEE International Symposium of Biomedical Imaging (ISBI) 2015 Challenge data set and compared with the previously proposed methods. Furthermore, the clinical applicability of DQN-based automated cephalometric landmark detection was confirmed by testing the DQN-based and DDQN-based network using 500-patient data collected in a clinic. The DQN-based network demonstrated that the average mean radius error of 19 landmarks was smaller than 2 mm, that is, the clinically accepted level, without data augmentation and additional preprocessing. Our DQN-based and DDQN-based approaches tested with the 500-patient data set showed the average success detection rate of 67.33% and 66.04% accuracy within 2 mm, respectively, indicating the feasibility and potential of clinical application.


Asunto(s)
Conocimiento , Humanos , Cefalometría/métodos
11.
Int J Mol Sci ; 24(16)2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37629024

RESUMEN

The CRISPR-based genome editing technology, known as clustered regularly interspaced short palindromic repeats (CRISPR), has sparked renewed interest in gene therapy. This interest is accompanied by the development of single-guide RNAs (sgRNAs), which enable the introduction of desired genetic modifications at the targeted site when used alongside the CRISPR components. However, the efficient delivery of CRISPR/Cas remains a challenge. Successful gene editing relies on the development of a delivery strategy that can effectively deliver the CRISPR cargo to the target site. To overcome this obstacle, researchers have extensively explored non-viral, viral, and physical methods for targeted delivery of CRISPR/Cas9 and a guide RNA (gRNA) into cells and tissues. Among those methods, liposomes offer a promising approach to enhance the delivery of CRISPR/Cas and gRNA. Liposomes facilitate endosomal escape and leverage various stimuli such as light, pH, ultrasound, and environmental cues to provide both spatial and temporal control of cargo release. Thus, the combination of the CRISPR-based system with liposome delivery technology enables precise and efficient genetic modifications in cells and tissues. This approach has numerous applications in basic research, biotechnology, and therapeutic interventions. For instance, it can be employed to correct genetic mutations associated with inherited diseases and other disorders or to modify immune cells to enhance their disease-fighting capabilities. In summary, liposome-based CRISPR genome editing provides a valuable tool for achieving precise and efficient genetic modifications. This review discusses future directions and opportunities to further advance this rapidly evolving field.


Asunto(s)
Edición Génica , Liposomas , ARN Guía de Sistemas CRISPR-Cas , Biotecnología , Señales (Psicología)
12.
Biomolecules ; 13(8)2023 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-37627321

RESUMEN

Xenon (Xe) has shown great potential as a stroke treatment due to its exceptional ability to protect brain tissue without inducing side effects. We have previously developed Xe-loaded liposomes for the ultrasound-activated delivery of Xe into the cerebral region and demonstrated their therapeutic efficacy. At present, the sole FDA-approved thrombolytic agent for stroke treatment is recombinant tissue plasminogen activator (rtPA). In this study, we aimed to investigate the potential of combining Xe-liposomes with an intravenous rtPA treatment in a clinically relevant embolic rat stroke model. We evaluated the combinational effect using an in vitro clot lysis model and an in vivo embolic middle cerebral artery occlusion (eMCAO) rat model. The treatment groups received intravenous administration of Xe-liposomes (20 mg/kg) at 2 h post-stroke onset, followed by the administration of rtPA (10 mg/kg) at either 2 or 4 h after the onset. Three days after the stroke, behavioral tests were conducted, and brain sections were collected for triphenyltetrazolium chloride (TTC) and TUNEL staining. Infarct size was determined as normalized infarct volume (%). Both in vitro and in vivo clot lysis experiments demonstrated that Xe-liposomes in combination with rtPA resulted in effective clot lysis comparable to the treatment with free rtPA alone. Animals treated with Xe-liposomes in combination with rtPA showed reduced TUNEL-positive cells and demonstrated improved neurological recovery. Importantly, Xe-liposomes in combination with late rtPA treatment reduced rtPA-induced hemorrhage, attributing to the reduction of MMP9 immunoreactivity. This study demonstrates that the combined therapy of Xe-liposomes and rtPA provides enhanced therapeutic efficacy, leading to decreased neuronal cell death and a potential to mitigate hemorrhagic side effects associated with late rtPA treatment.


Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Animales , Ratas , Activador de Tejido Plasminógeno/farmacología , Activador de Tejido Plasminógeno/uso terapéutico , Liposomas , Accidente Cerebrovascular/tratamiento farmacológico , Fibrinolíticos/farmacología , Fibrinolíticos/uso terapéutico , Infarto , Terapia Trombolítica
13.
Biomolecules ; 13(5)2023 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-37238730

RESUMEN

Atherosclerosis is a complex, multi-stage disease characterized by pathological changes across the vascular wall. Endothelial dysfunction, inflammation, hypoxia, and vascular smooth muscle cell proliferation contribute to its progression. An effective strategy capable of delivering pleiotropic treatment to the vascular wall is essential to limit neointimal formation. Echogenic liposomes (ELIP), which can encapsulate bioactive gases and therapeutic agents, have the potential to deliver enhanced penetration and treatment efficacy for atherosclerosis. In this study, liposomes loaded with nitric oxide (NO) and rosiglitazone, a peroxisome proliferator-activated receptor agonist, were prepared using hydration, sonication, freeze-thawing, and pressurization. The efficacy of this delivery system was evaluated in a rabbit model of acute arterial injury induced by balloon injury to the common carotid artery. Intra-arterial administration of rosiglitazone/NO co-encapsulated liposomes (R/NO-ELIP) immediately following injury resulted in reduced intimal thickening after 14 days. The anti-inflammatory and anti-proliferative effects of the co-delivery system were investigated. These liposomes were echogenic, enabling ultrasound imaging to assess their distribution and delivery. R/NO-ELIP delivery exhibited a greater attenuation (88 ± 15%) of intimal proliferation when compared to NO-ELIP (75 ± 13%) or R-ELIP (51 ± 6%) delivery alone. The study demonstrates the potential of echogenic liposomes as a promising platform for ultrasound imaging and therapeutic delivery.


Asunto(s)
Aterosclerosis , Liposomas , Animales , Conejos , Rosiglitazona , Sistemas de Liberación de Medicamentos/métodos , Óxido Nítrico , Gases
14.
Cell Biosci ; 13(1): 8, 2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36635704

RESUMEN

BACKGROUND: Temporal lobe epilepsy (TLE) remains one of the most drug-resistant focal epilepsies. Glutamate excitotoxicity and neuroinflammation which leads to loss of synaptic proteins and neuronal death appear to represent a pathogen that characterizes the neurobiology of TLE. Photobiomodulation (PBM) is a rapidly growing therapy for the attenuation of neuronal degeneration harboring non-invasiveness benefits. However, the detailed effects of PBM on excitotoxicity or neuroinflammation remain unclear. We investigated whether tPBM exerts neuroprotective effects on hippocampal neurons in epilepsy mouse model by regulating synapse and synapse-related genes. METHODS: In an in vitro study, we performed imaging analysis and western blot in primary hippocampal neurons from embryonic (E17) rat pups. In an in vivo study, RNA sequencing was performed to identify the gene regulatory by PBM. Histological stain and immunohistochemistry analyses were used to assess synaptic connections, neuroinflammation and neuronal survival. Behavioral tests were used to evaluate the effects of PBM on cognitive functions. RESULTS: PBM was upregulated synaptic connections in an in vitro. In addition, it was confirmed that transcranial PBM reduced synaptic degeneration, neuronal apoptosis, and neuroinflammation in an in vivo. These effects of PBM were supported by RNA sequencing results showing the relation of PBM with gene regulatory networks of neuronal functions. Specifically, Nlgn3 showed increase after PBM and silencing the Nlgn3 reversed the positive effect of PBM in in vitro. Lastly, behavioral alterations including hypoactivity, anxiety and impaired memory were recovered along with the reduction of seizure score in PBM-treated mice. CONCLUSIONS: Our findings demonstrate that PBM attenuates epileptic excitotoxicity, neurodegeneration and cognitive decline induced by TLE through inhibition of the Nlgn3 gene decrease induced by excitotoxicity.

15.
Comput Biol Med ; 149: 106041, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36049411

RESUMEN

BACKGROUND: Saeng-Ji-Hwang-Ko (SJHK) is a traditional Korean medicine formula derived from Donguibogam, a classic medical textbook, published in 1613. It is described as a general treatment for So-gal (wasting-thirst, ) known as type 2 diabetes mellitus (T2DM) in a modern clinical term. It is necessary to elucidate the potential compounds and targets of SJHK for T2DM treatment by conducting network pharmacology and molecular docking analyses. METHODS: Information about the chemical constituents of SJHK were collected, and druggable compounds were screened based on oral bioavailability and drug-likeness. Putative target genes of druggable compounds and T2DM-related genes were retrieved from public databases. A compound-target network was constructed to visualize the relationship between the druggable compounds in SJHK and common targets related to T2DM. The constructed network was further investigated through Protein-Protein Interaction, Gene Ontology, Kyoto Encyclopedia of Genes and Genomes pathway analyses, and molecular docking. RESULTS: Compound-target network analysis demonstrated that kaempferol, salicylic acid, estrone, and ß-sitosterol were key compounds of SJHK with PTGS2, ESR1, PRKAA2, PRKAB1, and CYP19A1 being its key targets. Estrogen signaling, AGE-RAGE signaling, insulin resistance, non-alcoholic fatty liver disease, and TNF signaling pathway were potential pathways involved in the effect of SJHK on T2DM. Molecular docking simulations revealed that estrone and ß-sitosterol had the strong binding energies for all the key target proteins. CONCLUSIONS: This study demonstrates that network pharmacology and molecular docking analyses help to better understand the potential key compounds and targets of SJHK for treating T2DM as a complementary medicine. SUMMARY: Type 2 diabetes mellitus (T2DM) is a complex metabolic disorder caused by genetic and/or environmental factors. There has been a growing attention to new therapeutic approaches to treat T2DM using traditional medicine as a complementary treatment which is expected to have synergistic effects with few side effects. Saeng-Ji-Hwang-Ko (SJHK) is a traditional Korean medicine (TKM) formula derived from Donguibogam, a classic medical textbook, published in 1613. It is described as a general treatment for So-gal (wasting-thirst, ) known as type 2 diabetes mellitus (T2DM) in a modern clinical term. It is necessary to elucidate the potential compounds and targets of SJHK for T2DM treatment by conducting network pharmacology and molecular docking analyses. Compound-target network analysis demonstrated that kaempferol, salicylic acid, estrone, and ß-sitosterol were key compounds of SJHK with PTGS2, ESR1, PRKAA2, PRKAB1, and CYP19A1 being its key targets. Estrogen signaling, AGE-RAGE signaling, insulin resistance, non-alcoholic fatty liver disease, and TNF signaling pathway were potential pathways involved in the effect of SJHK on T2DM. Molecular docking evaluation revealed that estrone and ß-sitosterol had the highest binding energies for all key target proteins, suggesting potential key compounds of SJHK. Although additional future studies including further experimental and clinical validation are needed, this study demonstrates that SJHK has a great potential for treating T2DM as a complementary medicine.


Asunto(s)
Diabetes Mellitus Tipo 2 , Medicamentos Herbarios Chinos , Resistencia a la Insulina , Enfermedad del Hígado Graso no Alcohólico , Ciclooxigenasa 2/uso terapéutico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Estrógenos/uso terapéutico , Estrona/uso terapéutico , Humanos , Quempferoles/uso terapéutico , Simulación del Acoplamiento Molecular , Farmacología en Red , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Ácido Salicílico/uso terapéutico
16.
Artículo en Inglés | MEDLINE | ID: mdl-35969550

RESUMEN

Proactively detecting falls and preventing injuries are among the primary keys to a healthy life for the elderly. Near-fall remote monitoring in daily life could provide key information to prevent future falls and obtain quantitative rehabilitation status for patients with weak balance ability. In this study, we developed a deep learning-based novel classification algorithm to precisely categorize three classes (falls, near-falls, and activities of daily living (ADLs)) using a single inertial measurement unit (IMU) device attached to the waist. A total of 34 young participants were included in this study. An IMU containing accelerometer and gyroscope sensors was fabricated to acquire acceleration and angular velocity signals. A comprehensive experiment including thirty-six types of activities (10 types of falls, 10 types of near-falls, and 16 types of ADLs) was designed based on previous studies. A modified directed acyclic graph-convolution neural network (DAG-CNN) architecture with hyperparameter optimization was proposed to predict fall, near-fall, and ADLs. Prediction results of the modified DAG-CNN structure were found to be approximately 7% more accurate than the traditional CNN structure. For the case of near-falls, the modified DAG-CNN demonstrated excellent prediction performance with accuracy of over 98% by combining gyroscope and accelerometer features. Additionally, by combining acceleration and angular velocity the trained model showed better performance than each model of acceleration and angular velocity. It is believed that information to preemptively handle the risk of falls and quantitatively evaluate the rehabilitation status of the elderly with weak balance will be provided by monitoring near-falls.


Asunto(s)
Accidentes por Caídas , Aprendizaje Profundo , Accidentes por Caídas/prevención & control , Actividades Cotidianas , Anciano , Algoritmos , Humanos , Monitoreo Ambulatorio
17.
R Soc Open Sci ; 9(2): 211694, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35154799

RESUMEN

Transcatheter aortic valve replacement (TAVR) is now a standard treatment for high-surgical-risk patients with severe aortic valve stenosis. TAVR is being explored for broader indications including degenerated bioprosthetic valves, bicuspid valves and for aortic valve (AV) insufficiency. It is, however, challenging to predict whether the chosen valve size, design or its orientation would produce the most-optimal haemodynamics in the patient. Here, we present a novel patient-specific evaluation framework to realistically predict the patient's AV performance with a high-fidelity fluid-structure interaction analysis that included the patient's left ventricle and ascending aorta (AAo). We retrospectively evaluated the pre- and post-TAVR dynamics of a patient who underwent a 23 mm TAVR and evaluated against the patient's virtually de-calcified AV serving as a hypothetical benchmark. Our model predictions were consistent with clinical data. Stenosed AV produced a turbulent flow during peak-systole, while aortic flow with TAVR and de-calcified AV were both in the laminar-to-turbulent transitional regime with an estimated fivefold reduction in viscous dissipation. For TAVR, dissipation was highest during early systole when valve deformation was the greatest, suggesting that an efficient valve opening may reduce energy loss. Our study demonstrates that such patient-specific modelling frameworks can be used to improve predictability and in the planning of AV interventions.

18.
Sensors (Basel) ; 22(3)2022 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-35161531

RESUMEN

This study aims to design, develop, and evaluate the traction performance of an electric all-wheel-drive (AWD) tractor based on the power transmission and electric systems. The power transmission system includes the electric motor, helical gear reducer, planetary gear reducer, and tires. The electric system consists of a battery pack and charging system. An engine-generator and charger are installed to supply electric energy in emergency situations. The load measurement system consists of analog (current) and digital (battery voltage and rotational speed of the electric motor) components using a controller area network (CAN) bus. A traction test of the electric AWD tractor was performed towing a test vehicle. The output torques of the tractor motors during the traction test were calculated using the current and torque curves provided by the motor manufacturer. The agricultural work performance is verified by comparing the torque and rpm (T-N) curve of the motor with the reduction ratio applied. The traction is calculated using torque and specifications of the wheel, and traction performance is evaluated using tractive efficiency (TE) and dynamic ratio (DR). The results suggest a direction for the improvement of the electric drive system in agricultural research by comparison with the conventional tractor through the analysis of the agricultural performance and traction performance of the electric AWD tractor.


Asunto(s)
Agricultura , Tracción , Suministros de Energía Eléctrica , Electricidad , Torque
19.
Phytomedicine ; 97: 153892, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35033970

RESUMEN

BACKGROUND: Elaeocarpus sylvestris (Lour.) Poir. (Elaeocarpaceae) belongs to a genus of tropical and semitropical evergreen trees, which has known biological activities such as antiviral and immunomodulatory activities. However, its antiviral potential against influenza virus infection remains unknown. PURPOSE: In this study, we investigated the antiviral activity of the 50% aqueous ethanolic extract of E. sylvestris (ESE) against influenza A virus (IAV) infection, which could lead to the development of novel phytomedicine to treat influenza virus infection. METHODS: To investigate the in vitro antiviral activity of ESE and its main ingredients, 1,​2,​3,​4,​6-​penta-​O-​galloyl-ß-d-glucose (PGG) and geraniin (GE), the levels of viral RNAs, proteins, and infectious viral particles in IAV-infected MDCK cells were analyzed. Molecular docking analysis was performed to determine the binding energy of PGG and GE for IAV proteins. To investigate in vivo antiviral activity, IAV-infected mice were treated intranasally or intragastrically with ESE, PGG, or GE. RESULTS: ESE and its gallate main ingredients (PGG and GE) strongly inhibited the production of viral RNAs, viral proteins, and infectious viral particles in vitro. Also through the viral attachment on cells, polymerase activity, signaling pathway, we revealed the ESE, PGG, and GE inhibit multiple steps of IAV replication. Molecular docking analysis revealed that PGG and GE could interact with 12 key viral proteins (M1, NP, NS1 effector domain (ED), NS1 RNA-binding domain (RBD), HA pocket A, HA receptor-binding domain (RBD), NA, PA, PB1, PB2 C-terminal domain, PB2 middle domain, and PB2 cap-binding domain) of IAV proteins with stable binding energy. Furthermore, intranasal administration of ESE, PGG, or GE protected mice from IAV-induced mortality and morbidity. Importantly, oral administration of ESE suppressed IAV replication and the expression of inflammatory cytokines such as IFN-γ, TNF-α, and IL-6 in the lungs to a large extent. CONCLUSION: ESE and its major components (PGG and PE) exhibited strong antiviral activity in multiple steps against IAV infection in silico, in vivo, and in vitro. Therefore, ESE could be used as a novel natural product derived therapeutic agent to treat influenza virus infection.


Asunto(s)
Antivirales , Elaeocarpaceae , Virus de la Influenza A , Extractos Vegetales , Animales , Antivirales/farmacología , Elaeocarpaceae/química , Virus de la Influenza A/efectos de los fármacos , Virus de la Influenza A/fisiología , Ratones , Simulación del Acoplamiento Molecular , Extractos Vegetales/farmacología , Replicación Viral
20.
J Ethnopharmacol ; 287: 114951, 2022 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-34958877

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Elaeocarpus sylvestris var. ellipticus (ES), a plant that grows in Taiwan, Japan, and Jeju Island in Korea. ES root bark, known as "sanduyoung," has long been used in traditional oriental medicine. ES is also traditionally used to treat anxiety, asthma, arthritis, stress, depression, palpitation, nerve pain, epilepsy, migraine, hypertension, liver diseases, diabetes, and malaria. However, lack of efficacy and mechanism studies on ES. AIM OF THE STUDY: In the present study, we aim to investigate the VZV-antiviral efficacy, pain suppression, and the anti-inflammatory and antipyretic effects of ES. METHODS: and methods: Inhibition of VZV was evaluated by hollow fiber assays. Analgesic and antipyretic experiments were conducted using ICR mice and SD Rats, and anti-inflammatory experiments were conducted using Raw264.7 cells. RESULTS: To evaluate the efficacy of ESE against VZV, we conducted antiviral tests. ESE inhibited cell death by disrupting virus and gene expression related to invasion and replication. In addition, ESE suppressed the pain response as measured by writhing and formalin tests and suppressed LPS-induced inflammatory fever. Further, ESE inhibited the phosphorylation of IκB and NF-κB in LPS-induced Raw264.7 cells and expression of COX-2, iNOS, IL-1ß, IL-6, and TNF-α. CONCLUSION: E. sylvestris shows potential as a source of medicine. ESE had a direct effect on VZV and an inhibitory effect on the pain and inflammation caused by VZV infection.


Asunto(s)
Antivirales/farmacología , Elaeocarpaceae/química , Herpesvirus Humano 3/efectos de los fármacos , Extractos Vegetales/farmacología , Analgésicos/aislamiento & purificación , Analgésicos/farmacología , Animales , Antiinflamatorios/aislamiento & purificación , Antiinflamatorios/farmacología , Antipiréticos/aislamiento & purificación , Antipiréticos/farmacología , Antivirales/aislamiento & purificación , Inflamación/tratamiento farmacológico , Inflamación/virología , Masculino , Ratones , Ratones Endogámicos ICR , Dolor/tratamiento farmacológico , Dolor/virología , Células RAW 264.7 , Ratas , Ratas Sprague-Dawley , Infección por el Virus de la Varicela-Zóster/tratamiento farmacológico , Infección por el Virus de la Varicela-Zóster/virología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...