Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 97
1.
Int J Nanomedicine ; 19: 5011-5020, 2024.
Article En | MEDLINE | ID: mdl-38832337

Purpose: Atomic layer deposition (ALD) is a method that can deposit zirconia uniformly on an atomic basis. The effect of deposited zirconia on titanium implants using ALD was evaluated in vivo. Methods: Machined titanium implants (MTIs) were used as the Control. MTIs treated by sandblasting with large grit and acid etching (SA) and MTIs deposited with zirconia using ALD are referred to as Groups S and Z, respectively. Twelve implants were prepared for each group. Six rabbits were used as experimental animals. To evaluate the osteogenesis and osteocyte aspects around the implants, radiological and histological analyses were performed. The bone-to-implant contact (BIC) ratio was measured and statistically analyzed to evaluate the osseointegration capabilities. Results: In the micro-CT analysis, more radiopaque bone tissues were observed around the implants in Groups S and Z. Histological observation found that Groups S and Z had more and denser mature bone tissues around the implants in the cortical bone area. Many new and mature bone tissues were also observed in the medullary cavity area. For the BIC ratio, Groups S and Z were significantly higher than the Control in the cortical bone area (P < 0.017), but there was no significant difference between Groups S and Z. Conclusion: MTIs deposited with zirconia using ALD (Group Z) radiologically and histologically showed more mature bone formation and activated osteocytes compared with MTIs (Control). Group Z also had a significantly higher BIC ratio than the Control. Within the limitations of this study, depositing zirconia on the surface of MTIs using ALD can improve osseointegration in vivo.


Osseointegration , Titanium , Zirconium , Animals , Zirconium/chemistry , Zirconium/pharmacology , Rabbits , Titanium/chemistry , Titanium/pharmacology , Osseointegration/drug effects , Surface Properties , X-Ray Microtomography , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Bone-Implant Interface , Osteogenesis/drug effects , Dental Implants , Prostheses and Implants
2.
Chem Commun (Camb) ; 2024 Jun 24.
Article En | MEDLINE | ID: mdl-38912646

In this work, experimental and theoretical analyses reveal that different types of Cu wires significantly change the adsorption properties of reactant molecules and the benzyl alcohol oxidation reaction performance. In particular, CuO nanowires in situ grown on Cu foam exhibit the best performance with a low potential of 1.39 V at a current density of 200 mA cm-2, high selectivity to benzoic acid production, and good operational stability.

3.
Chem Sci ; 15(21): 7908-7925, 2024 May 29.
Article En | MEDLINE | ID: mdl-38817562

The goal of most materials discovery is to discover materials that are superior to those currently known. Fundamentally, this is close to extrapolation, which is a weak point for most machine learning models that learn the probability distribution of data. Herein, we develop reinforcement learning-guided combinatorial chemistry, which is a rule-based molecular designer driven by trained policy for selecting subsequent molecular fragments to get a target molecule. Since our model has the potential to generate all possible molecular structures that can be obtained from combinations of molecular fragments, unknown molecules with superior properties can be discovered. We theoretically and empirically demonstrate that our model is more suitable for discovering better compounds than probability distribution-learning models. In an experiment aimed at discovering molecules that hit seven extreme target properties, our model discovered 1315 of all target-hitting molecules and 7629 of five target-hitting molecules out of 100 000 trials, whereas the probability distribution-learning models failed. Moreover, it has been confirmed that every molecule generated under the binding rules of molecular fragments is 100% chemically valid. To illustrate the performance in actual problems, we also demonstrate that our models work well on two practical applications: discovering protein docking molecules and HIV inhibitors.

4.
Adv Mater ; 36(25): e2307286, 2024 Jun.
Article En | MEDLINE | ID: mdl-38516842

Solid oxide fuel cells that operate at intermediate temperatures require efficient catalysts to enhance the inherently poor electrochemical activity of the composite electrodes. Here, a simple and practical electrochemical deposition method is presented for fabricating a PrOx overlayer on lanthanum strontium manganite-yttria-stabilized zirconia (LSM-YSZ) composite electrodes. The method requires less than four minutes for completion and can be carried out under at ambient temperature and pressure. Crucially, the treatment significantly improves the electrode's performance without requiring heat treatment or other supplementary processes. The PrOx-coated LSM-YSZ electrode exhibits an 89% decrease in polarization resistance at 650 °C (compared to an untreated electrode), maintaining a tenfold reduction after ≈400 h. Transmission line model analysis using impedance spectra confirms how PrOx coating improved the oxygen reduction reaction activity. Further, tests with anode-supported single cells reveal an outstanding peak power density compared to those of other LSM-YSZ-based cathodes (e.g., 418 mW cm-2 at 650 °C). Furthermore, it is demonstrated that multicomponent coating, such as (Pr,Ce)Ox, can also be obtained with this method. Overall, the observations offer a promising route for the development of high-performance solid oxide fuel cells.

5.
Korean J Ophthalmol ; 38(2): 105-112, 2024 Apr.
Article En | MEDLINE | ID: mdl-38351485

PURPOSE: To evaluate the refractive outcomes after ultrathin Descemet stripping automated endothelial keratoplasty (UT-DSAEK) combined with phacoemulsification and intraocular lens implantation (triple procedure) in the South Korean population. METHODS: This retrospective observational study included 37 eyes of 36 patients who underwent the UT-DSAEK triple procedure between 2012 and 2021 in a single tertiary hospital. Preoperative and postoperative refractive outcomes and endothelial parameters at 1, 3, 6, and 12 months were observed. RESULTS: At the final postoperative 12-month period, the average best-corrected visual acuity was 0.4 ± 0.5 in logarithm of the minimum angle of resolution. The mean endothelial cell density at 12 months was 1,841.92 ± 731.24 cells/mm2, indicating no significant endothelial cell loss compared to the baseline (p = 0.128). The mean postoperative central corneal thickness at 12 months was 597.41 ± 86.26 µm. The postoperative mean absolute error at 12 months was 0.96 ± 0.89 diopters (D) and mean error was 0.89 ± 0.97 D. CONCLUSIONS: The results of our South Korean cohort study on UT-DSAEK triple surgery showed favorable and safe outcomes. Regardless of graft thickness, it should be noted that a hyperopic shift of 1.00 to 2.00 D needs to be considered in the case of UT-DSAEK triple surgery.


Cataract , Corneal Transplantation , Descemet Stripping Endothelial Keratoplasty , Fuchs' Endothelial Dystrophy , Humans , Visual Acuity , Cohort Studies , Refraction, Ocular , Retrospective Studies , Descemet Stripping Endothelial Keratoplasty/methods , Endothelium, Corneal/transplantation , Fuchs' Endothelial Dystrophy/surgery
6.
Appl Microbiol Biotechnol ; 108(1): 224, 2024 Feb 20.
Article En | MEDLINE | ID: mdl-38376550

The occurrence of autophagy in recombinant Chinese hamster ovary (rCHO) cell culture has attracted attention due to its effects on therapeutic protein production. Given the significance of glycosylation in therapeutic proteins, this study examined the effects of autophagy-inhibiting chemicals on sialylation of Fc-fusion glycoproteins in rCHO cells. Three chemical autophagy inhibitors known to inhibit different stages were separately treated with two rCHO cell lines that produce the same Fc-fusion glycoprotein derived from DUKX-B11 and DG44. All autophagy inhibitors significantly decreased the sialylation of Fc-fusion glycoprotein in both cell lines. The decrease in sialylation of Fc-fusion glycoprotein is unlikely to be attributed to the release of intracellular enzymes, given the high cell viability and low activity of extracellular sialidases. Interestingly, the five intracellular nucleotide sugars remained abundant in cells treated with autophagy inhibitors. In the mRNA expression profiles of 27 N-glycosylation-related genes using the NanoString nCounter system, no significant differences in gene expression were noted. With the positive effect of supplementing nucleotide sugar precursors on sialylation, attempts were made to enhance the levels of intracellular nucleotide sugars by supplying these precursors. The addition of nucleotide sugar precursors to cultures treated with inhibitors successfully enhanced the sialylation of Fc-fusion glycoproteins compared to the control culture. This was particularly evident under mild stress conditions and not under relatively severe stress conditions, which were characterized by a high decrease in sialylation. These results suggest that inhibiting autophagy in rCHO cell culture decreases sialylation of Fc-fusion glycoprotein by constraining the availability of intracellular nucleotide sugars. KEY POINTS: •  The autophagy inhibition in rCHO cell culture leads to a significant reduction in the sialylation of Fc-fusion glycoprotein. •  The pool of five intracellular nucleotide sugars remained highly abundant in cells treated with autophagy inhibitors. •  Supplementation of nucleotide sugar precursors effectively restores decreased sialylation, particularly under mild stress conditions but not in relatively severe stress conditions.


Autophagy , Glycoproteins , Animals , Cricetinae , CHO Cells , Cricetulus , Glycoproteins/genetics , Nucleotides , Sugars
7.
Small ; 20(10): e2304814, 2024 Mar.
Article En | MEDLINE | ID: mdl-37875646

Owing to the limited electrochemical stability window of carbonate electrolytes, the initial formation of a solid electrolyte interphase and surface film on the negative and positive electrode surfaces by the decomposition of the electrolyte component is inevitable for the operation of lithium secondary batteries. The deposited film on the surface of the active material is vital for reducing further electrochemical side reactions at the surface; hence, the manipulation of this formation process is necessary for the appropriate operation of the assembled battery system. In this study, the thermal decomposition of LiPF6 salt is used as a surface passivation agent, which is autocatalytically formed during high-temperature storage. The thermally formed difluorophosphoric acid is subsequently oxidized on the partially charged high-Ni positive electrode surface, which improves the cycleability of lithium metal cells via phosphorus- and fluorine-based surface film formation. Moreover, the improvement in the high-temperature cycleability is demonstrated by controlling the formation process in the lithium-ion pouch cell with a short period of high-temperature storage before battery usage.

8.
Phys Rev Lett ; 131(16): 166201, 2023 Oct 20.
Article En | MEDLINE | ID: mdl-37925700

Triboelectrification mechanism is still not understood, despite centuries of investigations. Here, we propose a model showing that mechanochemistry is key to elucidate triboelectrification fundamental properties. Studying contact between gold and silicate glasses, we observe that the experimental triboelectric output is subject to large variations and polarity inversions. First principles analysis shows that electronic transfer is activated by mechanochemistry and the tribopolarity is determined by the termination exposed to contact, depending on the material composition, which can result in different charging at the macroscale. The electron transfer mechanism is driven by the interface barrier dynamics, regulated by mechanical forces. The model provides a unified framework to explain several experimental observations, including the systematic variations in the triboelectric output and the mixed positive-negative "mosaic" charging patterns, and paves the way to the theoretical prediction of the triboelectric properties.

9.
ACS Nano ; 17(16): 15931-15941, 2023 Aug 22.
Article En | MEDLINE | ID: mdl-37548961

For realizing all-solid-state batteries (ASSBs), it is highly desirable to develop a robust solid electrolyte (SE) that has exceptional ionic conductivity and electrochemical stability at room temperature. While argyrodite-type Li6PS5Cl (LPSCl) SE has garnered attention for its relatively high ionic conductivity (∼3.19 × 10-3 S cm-1), it tends to emit hydrogen sulfide (H2S) in the presence of moisture, which can hinder the performance of ASSBs. To address this issue, researchers are exploring approaches that promote structural stability and moisture resistance through elemental doping or substitution. Herein, we suggest using zeolite imidazolate framework-8 as a moisture absorbent in LPSCl without modifying the structure of the SE or the electrode configuration. By incorporating highly ordered porous materials, we demonstrate that ASSBs configured with LPSCl SE display stable cyclability due to effective and long-lasting moisture absorption. This approach not only improves the overall quality of ASSBs but also lays the foundation for developing a moisture-resistant sulfide electrolyte.

10.
Parasites Hosts Dis ; 61(3): 317-324, 2023 Aug.
Article En | MEDLINE | ID: mdl-37648238

Standard- and large-sized eggs of Trichuris trichiura were found in the feces of schoolchildren in Yangon, Myanmar during epidemiological surveys and mass deworming with albendazole in 2017-2019. The standard-sized eggs were identified as those of T. trichiura, but it was necessary to exclude the possibility of the large-sized eggs belonging to Trichuris vulpis, a dog whipworm. We conducted morphological and molecular studies to determine the species of the 2 types of Trichuris eggs. Individual eggs of both sizes were isolated from Kato-Katz fecal smears (n=20) and mechanically destroyed using a 23G injection needle. Nuclear DNA was extracted, and the 18S rRNA region was sequenced in 15 standard-sized eggs and 15 large-sized eggs. The average size of standard-sized eggs (T. trichiura) was 55.2×26.1 µm (range: 51.7-57.6×21.3-28.0 µm; n=97), whereas the size of large-sized eggs was 69.3×32.0 µm (range: 65.1-76.4×30.1-34.5 µm; n=20), slightly smaller than the known size of T. vulpis. Regarding standard-sized eggs, the 18S rRNA nucleotide sequences exhibited 100% homology with T. trichiura deposited in GenBank and 88.6-90.5% homology with T. vulpis. Regarding large-sized eggs, the nucleotide sequences showed 99.8-100% homology with T. trichiura in GenBank and 89.6-90.7% homology with T. vulpis. Both standard- and large-sized eggs of Trichuris spp. found in Myanmar schoolchildren during 2017-2019 were morphologically and molecularly confirmed to belong to T. trichiura. The conversion of eggs from smaller to large sizes might be due to anthelmintic treatments with albendazole.


Albendazole , Manduca , Animals , Dogs , Myanmar/epidemiology , RNA, Ribosomal, 18S/genetics , Trichuris/genetics , Feces
11.
Transl Vis Sci Technol ; 12(7): 5, 2023 07 03.
Article En | MEDLINE | ID: mdl-37405796

Purpose: To use the revised model eye to observe and compare how the world is perceived by patients with monofocal intraocular lens (IOL), Eyhance, bifocal IOL, and Symfony, and check its performance. Methods: The new mobile model eye consists of an artificial cornea, an IOL, a wet cell, an adjustable lens tube, a lens tube, an objective lens, a tube lens, and a digital single-lens reflex camera. We collected photographs of distant buildings and streets at night, videos of the focusing process, and videos of United States Air Force resolution target from 6 m to 15 cm and analyzed them quantitatively. Results: In this revised model eye using an objective lens, an artificial cornea similar to the human cornea could be used. Using a digital single-lens reflex camera, high-resolution imaging was possible without an additional computer. Fine focusing was possible using an adjustable lens tube. For monofocal IOL, the contrast modulation was 0.39 at 6 m and decreased consistently. It was nearly 0 as the model eye got closer than 1.6 m. For Eyhance, the contrast modulation was 0.40 at 6 m. It then decreased and increased again. At 1.3 m, it was 0.07 and then decreased again. For Symfony, the contrast modulation was 0.18 at 6 m. Symfony showed the characteristics of a bifocal IOL with low add diopter. Halos (234 pixels) were observed around lights, although smaller than those seen with bifocal IOL (432 pixels). Conclusions: We could objectively observe and compare how patients with monofocal IOL, Eyhance, bifocal IOL, and Symfony perceived the world using this revised model eye. Translational Relevance: Data obtained by this new mobile model eye can be used to help patients select their IOLs before cataract surgeries.


Lenses, Intraocular , Humans , Visual Acuity , Vision, Ocular
12.
Small ; 19(28): e2301754, 2023 Jul.
Article En | MEDLINE | ID: mdl-36970771

The uncontrollable dendritic growth of metallic lithium during repeated cycling in carbonate electrolytes is a crucial obstacle hindering the practical use of Li-metal batteries (LMBs). Among numerous approaches proposed to mitigate the intrinsic constraints of Li metal, the design of a functional separator is an attractive approach to effectively suppress the growth of Li dendrites because direct contact with both the Li metal surface and the electrolyte is maintained. Here, a newly designed all-in-one separator containing bifunctional CaCO3 nanoparticles (CPP separator) is proposed to achieve the flattening of Li deposits on the Li electrode. Strong interactions between the highly polar CaCO3 nanoparticles and the polar solvent reduces the ionic radius of the Li+ -solvent complex, thus increasing the Li+ transference number and leading to a reduced concentration overpotential in the electrolyte-filled separator. Furthermore, the integration of CaCO3 nanoparticles into the separator induces the spontaneous formation of mechanically-strong and lithiophilic CaLi2 at the Li/separator interface, which effectively decreases the nucleation overpotential toward Li plating. As a result, the Li deposits exhibit dendrite-free planar morphologies, thus enabling excellent cycling performance in LMBs configured with a high-Ni cathode in a carbonate electrolyte under practical operating conditions.

13.
ACS Appl Mater Interfaces ; 15(8): 10744-10751, 2023 Mar 01.
Article En | MEDLINE | ID: mdl-36787511

This study validates the beneficial role of residual Li compounds on the surface of Ni-rich cathode materials (LiNixCoyMnzO2, NCM). Residual Li compounds on Ni-rich NCM are naturally formed during the synthesis procedure, which degrades the initial Coulombic efficiency and generates slurry gelation during electrode fabrication in Li-ion batteries (LIBs) using liquid electrolytes. To solve this problem, washing pretreatment is usually introduced to remove residual Li compounds on the NCM surface. In contrast to LIBs, we found that residual Li compounds can serve as a functional layer that suppresses the interfacial side reactions of the NCM in all-solid-state batteries (ASSBs). The formation of resistive phosphate-based compounds from the undesirable side reaction during the initial charging step is suppressed by the residual Li compounds on the surface of the NCM, thereby reducing polarization growth in ASSBs and enhancing rate performances. The advantageous effects of the intrinsic residual Li compounds on the NCM surface suggest that the essential washing process of the NCM for the liquid-based LIB system should be reconsidered for ASSB systems.

14.
Article En | MEDLINE | ID: mdl-36753413

Though lithium-ion batteries (LIBs) have seen a meteoric rise in worldwide deployment over the last decade, they should be further advanced in constant demand of higher rate capability and wider temperature adaptability. A solid electrolyte interphase (SEI) is the essential part of LIBs, determining the charge-discharge performance and degradation behavior. Herein, improvement of the SEI properties is achieved by regulating the electrochemical double layer structure with a nonsacrificial electrolyte additive, that is, lithium nonafluoro-1-butanesulfonate. The anion adsorption of the additive affects the decomposition behavior of other additive and solvent species, and the generated SEI at the graphite electrode becomes thinner and more uniform, leading to decreased impedance and finally resulting in improved energy efficiency, power capability, and fast charging performance of the graphite/NCM811 cell. Furthermore, the low-temperature cycleability at -20 °C is considerably enhanced with no dendritic Li metal deposition at the negative electrode surface. A mechanistic study on the interfacial phenomena and the effect is carried out by using various theoretical and experimental methods, such as density functional theory calculations, electrochemical quartz crystal microbalance, and transmission electron microscopy. Consequently, the approach of SEI modification with the nonsacrificial electrolyte additive can be one of the effective ways to advance LIB technology in future.

15.
ACS Appl Mater Interfaces ; 15(5): 6923-6932, 2023 Feb 08.
Article En | MEDLINE | ID: mdl-36715535

The lithium (Li) metal anode is highly desirable for high-energy density batteries. During prolonged Li plating-stripping, however, dendritic Li formation and growth are probabilistically high, allowing physical contact between the two electrodes, which results in a cell short-circuit. Engineering the separator is a promising and facile way to suppress dendritic growth. When a conventional coating approach is applied, it usually sacrifices the bare separator structure and severely increases the thickness, ultimately decreasing the volumetric density. Herein, we introduce dielectric silicon oxide with the feature of bi-morphological form, i.e., backbone-covered and backbone-anchored, onto the conventional polyethylene separator without any volumetric change. These functionally vary the Li+ transference number and the ionic conductivity so as to modulate Li-ion solvation and self-scavenging of Li dendrites. The proposed separator paves the way to maximizing the full cell performance of Li/NCM622 toward practical application.

16.
Adv Sci (Weinh) ; 9(34): e2204800, 2022 Dec.
Article En | MEDLINE | ID: mdl-36266984

Urea oxidation reaction (UOR) with a low equilibrium potential offers a promising route to replace the oxygen evolution reaction for energy-saving hydrogen generation. However, the overpotential of the UOR is still high due to the complicated 6e- transfer process and adsorption/desorption of intermediate products. Herein, utilizing a cation exchange strategy, Ni-doped CuO nanoarrays grown on 3D Cu foam are synthesized. Notably, Ni-CuO NAs/CF requires a low potential of 1.366 V versus a reversible hydrogen electrode to drive a current density of 100 mA cm-2 , outperforming various benchmark electrocatalysts and maintaining robust stability in alkaline media. Theoretical and experimental studies reveal that Ni as the driving force center can effectively enhance the urea adsorption and stabilize CO*/NH* intermediates toward the UOR. These findings suggest a new direction for constructing nanostructures and modulating electronic structures, ultimately developing promising Cu-based electrode catalysts.

17.
J Clin Med ; 11(15)2022 Aug 08.
Article En | MEDLINE | ID: mdl-35956248

This retrospective cross-sectional study aimed to determine the association of oral statin use, dry eye disease (DED), and meibomian gland dysfunction (MGD). A total of 93 subjects were included and divided into two groups: statin users (n = 45) and nonstatin users (n = 47). Significant differences were observed in the total cholesterol (p = 0.013), low-density lipoprotein (LDL) (p = 0.005), and meiboscore (p = 0.000) levels between the two groups. For stratified analysis, the statin group was divided into subgroups according to the type or dose of statin and total duration of statin use. However, there were no differences in clinical features between the subgroups. In multiple regression analysis, meiboscore was significantly associated with age (slope = 0.05, p = 0.00) and statin use (slope = -1.19, p = 0.00), with an R2 of 0.44. Thus, older adults and participants who do not use statin appeared to have higher scores. In conclusion, although the mechanism is unclear, statins may exert a protective effect on the meibomian gland. Further lipidomic studies are required to determine the pharmacological effects of statins on the meibomian gland and other meibum components.

18.
BMC Ophthalmol ; 22(1): 292, 2022 Jul 04.
Article En | MEDLINE | ID: mdl-35788211

BACKGROUND: In the present study, we evaluated the correlation between meibomian gland dropout and meibum quality in the same central 8 meibomian glands of the eyelid. METHODS: Ninety-nine eyes of 91 patients with dry eye were included in the study. Dropout of the 8 central meibomian glands of the eyelids was graded as 0, 1, 2, or 3, according to the dropout area. The meibum quality was graded as follows: grade 0, no secretion; 1, inspissated/toothpaste consistency; 2, cloudy liquid secretion; and 3, clear liquid secretion. For 68 eyes of 68 patients, correlation analysis between dropout and meibum quality was performed. To precisely analyze the direct correlation between meibomian gland dropout in meibography and meibum quality, we evaluated 31 eyes of 23 patients with focal dropout in meibography. RESULTS: The median (interquartile range) meiboscore was 1.0 (2.0) in the upper eyelids and 0.0 (1.0) in the lower eyelids. The median (interquartile range) meibum quality grade was 3.0 (1.0) in the upper eyelids and 1.0 (1.0) in the lower eyelids. No significant correlation between the meiboscore and meibum quality grade was detected in the upper (p =0.746) or lower (p =0.551) eyelids. Analysis of the direct correlation between meibomian gland dropout in meibography and meibum quality in patients with focal dropout (loss of 1 or 2 adjacent meibomian glands), however, indicated that meibomian glands with dropout secreted little to no meibum. CONCLUSIONS: Overall analysis revealed no relationship between meibomian gland dropout and meibum quality, but more detailed investigation of each meibomian gland alone revealed that meibomian glands with dropout secrete little to no meibum.


Dry Eye Syndromes , Meibomian Glands , Dry Eye Syndromes/diagnosis , Humans , Meibomian Glands/diagnostic imaging , Physical Examination , Tears
19.
J Clin Med ; 11(14)2022 Jul 11.
Article En | MEDLINE | ID: mdl-35887773

The primary role of meibomian glands (MGs) is to actively synthesize and secret lipids and proteins spread onto the tear film, and the glandular lipids promote tear stability, prevent evaporation, and reduce friction. Meibomian gland dysfunction (MGD) is the leading cause of dry eye disease and one of the most common ophthalmic problems worldwide. MGs are densely innervated and regulated by hormones and growth factors. However, since the polar and nonpolar lipids are produced through processes in MGs that are not completely understood, a relevant question has been raised: Would the altered systemic lipids metabolism affect the physiology and structure of MGs? This review introduces the recent update regarding the relationships between serum lipid and MGD in clinical and basic research while providing answers to this question. A causal relationship remains to be established; however, serum lipid level or dyslipidemia may be related to MGD directly or indirectly, or both. Further studies are warranted to establish the role of serum lipid level and meibocyte differentiation/maturation and lipid synthesis.

20.
ACS Appl Mater Interfaces ; 14(31): 35645-35653, 2022 Aug 10.
Article En | MEDLINE | ID: mdl-35900885

To promote the reversible cycleability of Li metal negative electrodes, a Li-chelating azamacrocyclic ligand molecule is introduced into a carbonate-based electrolyte intended for lithium metal batteries. Reversible Li plating and stripping on the Cu electrode are found to be the outcomes of the bifunctional effects of adding the lithium nitrate-chelating azamacrocyclic ligand. The negatively shifted redox potential of the Li-chelating macrocyclic ligand, relative to that of the free Li-ion, acted as a cationic shielding molecule for smooth Li deposition, and the Li3N-based solid electrolyte interphase (SEI) film derived from the nitrate anion strengthened the interphasial characteristics of the Li metal negative electrode. Cationic shielding and Li3N-based SEI composition could help enhance the cycleability of the Li metal in a cascading manner. Consequently, the physicochemical characteristics of the lithium nitrate-chelated 1,4,8,11-tetramethyl-1,4,8,11-tetraazacylcotetradecane molecule exhibit stable Li/LiNi0.8Co0.1Mn0.1O2 cycleability.

...