Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plasmid ; 123-124: 102650, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36130651

RESUMEN

The link between E. coli strains contaminating foods and human disease is unclear, with some reports supporting a direct transmission of pathogenic strains via food and others highlighting their role as reservoirs for resistance and virulence genes. Here we take a genomics approach, analyzing a large set of fully-assembled genomic sequences from E. coli available in GenBank. Most of the strains isolated in food are more closely related to each other than to clinical strains, arguing against a frequent direct transmission of pathogenic strains from food to the clinic. We also provide strong evidence of genetic exchanges between food and clinical strains that are facilitated by plasmids. This is based on an overlapped representation of virulence and resistance genes in plasmids isolated from these two sources. We identify clusters of phylogenetically-related plasmids that are largely responsible for the observed overlap and see evidence of specialization, with some food plasmid clusters preferentially transferring virulence factors over resistance genes. Consistent with these observations, food plasmids have a high mobilization potential based on their plasmid taxonomic unit classification and on an analysis of mobilization gene content. We report antibiotic resistance genes of high clinical relevance and their specific incompatibility group associations. Finally, we also report a striking enrichment for adhesins in food plasmids and their association with specific IncF replicon subtypes. The identification of food plasmids with specific markers (Inc and PTU combinations) as mediators of horizontal transfer between food and clinical strains opens new research avenues and should assist with the design of surveillance strategies.


Asunto(s)
Infecciones por Escherichia coli , Escherichia coli , Humanos , Plásmidos/genética , Escherichia coli/genética , Antibacterianos/farmacología , Virulencia/genética , Farmacorresistencia Microbiana/genética , Genómica , Transferencia de Gen Horizontal
2.
Nat Commun ; 5: 5495, 2014 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-25510865

RESUMEN

Adaptation requires genetic variation, but founder populations are generally genetically depleted. Here we sequence two populations of an inbred ant that diverge in phenotype to determine how variability is generated. Cardiocondyla obscurior has the smallest of the sequenced ant genomes and its structure suggests a fundamental role of transposable elements (TEs) in adaptive evolution. Accumulations of TEs (TE islands) comprising 7.18% of the genome evolve faster than other regions with regard to single-nucleotide variants, gene/exon duplications and deletions and gene homology. A non-random distribution of gene families, larvae/adult specific gene expression and signs of differential methylation in TE islands indicate intragenomic differences in regulation, evolutionary rates and coalescent effective population size. Our study reveals a tripartite interplay between TEs, life history and adaptation in an invasive species.


Asunto(s)
Hormigas/genética , Elementos Transponibles de ADN , Genes de Insecto , Genoma de los Insectos , Islas Genómicas , Especies Introducidas , Adaptación Fisiológica , Animales , Evolución Biológica , Brasil , Metilación de ADN , Exones , Eliminación de Gen , Duplicación de Gen , Japón , Filogeografía , Polimorfismo de Nucleótido Simple
3.
Proc Natl Acad Sci U S A ; 108(14): 5673-8, 2011 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-21282631

RESUMEN

Ants are some of the most abundant and familiar animals on Earth, and they play vital roles in most terrestrial ecosystems. Although all ants are eusocial, and display a variety of complex and fascinating behaviors, few genomic resources exist for them. Here, we report the draft genome sequence of a particularly widespread and well-studied species, the invasive Argentine ant (Linepithema humile), which was accomplished using a combination of 454 (Roche) and Illumina sequencing and community-based funding rather than federal grant support. Manual annotation of >1,000 genes from a variety of different gene families and functional classes reveals unique features of the Argentine ant's biology, as well as similarities to Apis mellifera and Nasonia vitripennis. Distinctive features of the Argentine ant genome include remarkable expansions of gustatory (116 genes) and odorant receptors (367 genes), an abundance of cytochrome P450 genes (>110), lineage-specific expansions of yellow/major royal jelly proteins and desaturases, and complete CpG DNA methylation and RNAi toolkits. The Argentine ant genome contains fewer immune genes than Drosophila and Tribolium, which may reflect the prominent role played by behavioral and chemical suppression of pathogens. Analysis of the ratio of observed to expected CpG nucleotides for genes in the reproductive development and apoptosis pathways suggests higher levels of methylation than in the genome overall. The resources provided by this genome sequence will offer an abundance of tools for researchers seeking to illuminate the fascinating biology of this emerging model organism.


Asunto(s)
Hormigas/genética , Genoma de los Insectos/genética , Genómica/métodos , Filogenia , Animales , Hormigas/fisiología , Secuencia de Bases , California , Metilación de ADN , Biblioteca de Genes , Genética de Población , Jerarquia Social , Datos de Secuencia Molecular , Polimorfismo de Nucleótido Simple/genética , Receptores Odorantes/genética , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA