Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Discov Nano ; 19(1): 77, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38693438

RESUMEN

A nanofiber-based composite nonwoven fabric was fabricated for hemostatic wound dressing, integrating polyvinyl alcohol (PVA), kaolin, and γ-chitosan extracted from three type of insects. The γ-chitosan extracted from Protaetia brevitarsis seulensis exhibited the highest yield at 21.5%, and demonstrated the highest moisture-binding capacity at 535.6%. In the fabrication process of PVA/kaolin/γ-chitosan nonwoven fabrics, an electrospinning technique with needle-less and mobile spinneret was utilized, producing nanofibers with average diameters ranging from 172 to 277 nm. The PVA/kaolin/γ-chitosan nonwoven fabrics demonstrated enhanced biocompatibility, with cell survival rates under certain compositions reaching up to 86.9% (compared to 74.2% for PVA). Furthermore, the optimized fabric compositions reduced blood coagulation time by approximately 2.5-fold compared to PVA alone, highlighting their efficacy in hemostasis. In other words, the produced PVA/kaolin/γ-chitosan nonwoven fabrics offer potential applications as hemostatic wound dressings with excellent biocompatibility and improved hemostatic performance.

2.
Melanoma Res ; 34(1): 38-43, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-37924528

RESUMEN

Cutaneous melanoma, a highly aggressive skin tumor, is characterized by complex signaling pathways in terms of its pathogenesis and progression. Although the degree of pigmentation in melanoma determines its progression, metastasis, and prognosis, its association with inflammatory cytokines remains unclear. Thus, we evaluated the associations between melanoma pigmentation and plasma levels of inflammatory cytokines; furthermore, we investigated the potential variations in this relationship across the primary anatomic sites of melanoma. We enrolled patients with cutaneous melanoma who visited Chonnam National University Hwasun Hospital between January 2021 and December 2021. The anatomical sites of melanoma were categorized as acral and non-acral sites. The degree of pigmentation was quantified using computer software. In total, nine inflammatory cytokines were analyzed, including interleukin (IL)-2, IL-4, IL-5, IL-10, IL-12, IL-13, granulocyte-macrophage colony-stimulating factor (GM-CSF), interferon-γ (IFN-γ), and tumor necrosis factor-α (TNF-α). This study included 80 melanoma patients. Of these, 53 had acral melanoma and 27 had non-acral melanoma. Overall, plasma concentrations of IL-2, IL-4, IL-5, GM-CSF, and IFN-γ demonstrated significant correlations with diminished pigmentation. Furthermore, in the acral melanoma patients group, plasma concentrations of IL-2, IL-4, IL-5, GM-CSF, IFN-γ, and TNF-α revealed significant correlations with diminished pigmentation. Our results reveal significant associations between melanoma pigmentation and various cytokine levels, particularly in acral melanoma patients; these associations can be influenced by factors related to acral melanoma, such as physical stress or trauma. These correlations may also provide directions for the treatment of acral melanoma.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Humanos , Citocinas , Factor Estimulante de Colonias de Granulocitos y Macrófagos , Interleucina-2 , Melanoma/patología , Factor de Necrosis Tumoral alfa , Interleucina-4 , Interleucina-5 , Neoplasias Cutáneas/patología , Interferón gamma , Pigmentación
3.
Sensors (Basel) ; 23(18)2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37765869

RESUMEN

In this study, we analyzed the morphological changes and molecular structure changes on the surface of single-walled carbon nanotube (SWCNT) films during oxygen plasma (O2) etching of SWCNT surfaces formed by the spray method and analyzed their potential use as electrochemical electrodes. For this purpose, a SWCNT film was formed on the surface of a glass substrate using a self-made spray device using SWCNT powder prepared with DCB as a solvent, and SEM, AFM, and XPS analyses were performed as the SWCNT film was O2 plasma etched. SEM images and AFM measurements showed that the SWCNT film started etching after about 30 s under 50 W of O2 plasma irradiation and was completely etched after about 300 s. XPS analysis showed that as the O2 plasma etching of the SWCNT film progressed, the sp2 bonds representing the basic components of graphite decreased, the sp3 bonds representing defects increased, and the C-O, C=O, and COO peaks increased simultaneously. This result indicates that the SWCNT film was etched by the O2 plasma along with the oxygen species. In addition, electrochemical methods were used to verify the damage potential of the remaining SWCNTs after O2 plasma etching, including cyclic voltammetry, Randles plots, and EIS measurements. This resulted in a reversible response based on perfect diffusion control in the cyclic voltammetry, and an ideal linear curve in the Randles plot of the peak current versus square root scan rate curve. EIS measurements also confirmed that the charge transfer resistance of the remaining SWCNTs after O2 plasma etching is almost the same as before etching. These results indicate that the remaining SWCNTs after O2 plasma etching do not lose their unique electrochemical properties and can be utilized as electrodes for biosensors and electrochemical sensors. Our experimental results also indicate that the ionic conductivity enhancement by O2 plasma can be achieved additionally.

4.
Immunity ; 56(9): 2105-2120.e13, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37527657

RESUMEN

Childhood neglect and/or abuse can induce mental health conditions with unknown mechanisms. Here, we identified stress hormones as strong inducers of astrocyte-mediated synapse phagocytosis. Using in vitro, in vivo, and human brain organoid experiments, we showed that stress hormones increased the expression of the Mertk phagocytic receptor in astrocytes through glucocorticoid receptor (GR). In post-natal mice, exposure to early social deprivation (ESD) specifically activated the GR-MERTK pathway in astrocytes, but not in microglia. The excitatory post-synaptic density in cortical regions was reduced in ESD mice, and there was an increase in the astrocytic engulfment of these synapses. The loss of excitatory synapses, abnormal neuronal network activities, and behavioral abnormalities in ESD mice were largely prevented by ablating GR or MERTK in astrocytes. Our work reveals the critical roles of astrocytic GR-MERTK activation in evoking stress-induced abnormal behaviors in mice, suggesting GR-MERTK signaling as a therapeutic target for stress-induced mental health conditions.


Asunto(s)
Astrocitos , Fagocitosis , Estrés Psicológico , Animales , Niño , Humanos , Ratones , Astrocitos/metabolismo , Tirosina Quinasa c-Mer/genética , Hormonas/metabolismo , Sinapsis/metabolismo , Estrés Psicológico/metabolismo
5.
Front Mol Neurosci ; 15: 938590, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35966008

RESUMEN

Genetic variations resulting in the loss of function of the discs large homologs (DLG2)/postsynaptic density protein-93 (PSD-93) gene have been implicated in the increased risk for schizophrenia, intellectual disability, and autism spectrum disorders (ASDs). Previously, we have reported that mice lacking exon 14 of the Dlg2 gene (Dlg2 -/- mice) display autistic-like behaviors, including social deficits and increased repetitive behaviors, as well as suppressed spontaneous excitatory postsynaptic currents in the striatum. However, the neural substrate underpinning such aberrant synaptic network activity remains unclear. Here, we found that the corticostriatal synaptic transmission was significantly impaired in Dlg2 -/- mice, which did not seem attributed to defects in presynaptic releases of cortical neurons, but to the reduced number of functional synapses in the striatum, as manifested in the suppressed frequency of miniature excitatory postsynaptic currents in spiny projection neurons (SPNs). Using transmission electron microscopy, we found that both the density of postsynaptic densities and the fraction of perforated synapses were significantly decreased in the Dlg2 -/- dorsolateral striatum. The density of dendritic spines was significantly reduced in striatal SPNs, but notably, not in the cortical pyramidal neurons of Dlg2 -/- mice. Furthermore, a DLG2/PSD-93 deficiency resulted in the compensatory increases of DLG4/PSD-95 and decreases in the expression of TrkA in the striatum, but not particularly in the cortex. These results suggest that striatal dysfunction might play a role in the pathology of psychiatric disorders that are associated with a disruption of the Dlg2 gene.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...