Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Soft Robot ; 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38717835

RESUMEN

In this study, we propose a fabric muscle based on the Zigzag Shape Memory Alloy (ZSMA) actuator. Soft wearable robots have been gaining attention due to their flexibility and the ability to provide significant power support to the user without hindering their movement and mobility. There has been an increasing focus on the research and development of fabric muscles, which are crucial components of these robots. This article introduces a high-performance fabric muscle utilizing zigzag-shaped shape memory alloy (SMA), ZSMA, a new form of SMA actuator. Through modeling and experimentation of the ZSMA actuator, we identified an optimized actuator design and detailed the fabric muscle fabrication process. The proposed fabric actuator, weighing only 7.5 g, demonstrated the impressive capability to lift a weight of 2 kg with a contraction displacement of 40%. This significant achievement paves the way for future research possibilities in soft wearable robotics.

2.
Sci Rep ; 13(1): 13074, 2023 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-37567910

RESUMEN

Nephritis is common in systemic lupus erythematosus patients and is associated with hyper-activation of immune and renal cells. Although mesenchymal stem cells (MSCs) ameliorate nephritis by inhibiting T and B cells, whether MSCs directly affect renal cells is unclear. To address this issue, we examined the direct effect of MSCs on renal cells with a focus on chemokines. We found that expression of CCL2, CCL3, CCL4, CCL5, CCL8, CCL19, and CXCL10 increased 1.6-5.6-fold in the kidney of lupus-prone MRL.Faslpr mice with advancing age from 9 to 16 weeks. Although MSCs inhibited the increase in the expression of most chemokines by 52-95%, they further increased CCL8 expression by 290%. Using renal cells, we next investigated how MSCs enhanced CCL8 expression. CCL8 was expressed by podocytes, but not by tubular cells. MSCs enhanced CCL8 expression by podocytes in a contact-dependent manner, which was proved by transwell assay and blocking with anti-VCAM-1 antibody. Finally, we showed that CCL8 itself activated MSCs to produce more immunosuppressive factors (IL-10, IDO, TGF-ß1, and iNOS) and to inhibit more strongly IFN-γ production by T cells. Taken together, our data demonstrate that MSCs activate podocytes to produce CCL8 in a contact-dependent manner and conversely, podocyte-derived CCL8 might potentiate immunosuppressive activity of MSCs in a paracrine fashion. Our study documents a previously unrecognized therapeutic mechanism of MSCs in nephritis.


Asunto(s)
Lupus Eritematoso Sistémico , Nefritis Lúpica , Células Madre Mesenquimatosas , Podocitos , Animales , Ratones , Quimiocinas/metabolismo , Ratones Endogámicos MRL lpr , Podocitos/metabolismo
3.
Soft Robot ; 10(1): 17-29, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35255238

RESUMEN

Twisted and coiled actuators (TCAs), which are light but capable of producing significant power, were developed in recent times. After their introduction, there have been numerous improvements in performance, including development of techniques such as actuation strain and heating methods. However, the development of robots using TCA is still in its early stages. In this study, a bionic arm driven by TCAs was developed for light and flexible operation. The aim of this study was to gain a foothold in the future of robot development using TCA, which is considered as the appropriate artificial muscle. The main developments were with regard to the design (from actuator design to system design), system configuration for control, and control method. First, a process technology for repeatedly manufacturing TCA, which can be used practically and delivers sufficient performance, was developed. Based on the developed actuator, a joint was designed to move the elbow and hand. The final bionic arm was developed by integrating the TCA, pulley joint, and control system. It moved the elbow up to 100° and allowed the hand to move in three degrees of freedom. Using the control method for each joint, we were able to show the movement by using the hand and elbow.


Asunto(s)
Brazo , Robótica , Biónica , Robótica/métodos , Músculos , Movimiento/fisiología
4.
Int Immunopharmacol ; 113(Pt A): 109332, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36274485

RESUMEN

Natural killer (NK) cell-based therapy has been studied for the treatment of patients with cancers, but the inadequate infiltration of NK cells into solid tumors remains a big challenge to its clinical application. In this study, we examined the interaction between NK cells and endothelial cells, which might play a major role in NK cell homing to solid tumors. We found that endothelial cells were activated by TNF-α and IL-1ß, which were produced by tumor-associated CD11b+ cells, which included F4/80+ macrophages. TNF-α-treated endothelial cells increased NK cell migration by producing CCL2 and CCL7, which was proved by transwell and imaging assays. TNF-α-treated endothelial cells adhered well to NK cells, which was due to a TNF-α-induced increase in ICAM-1 and VCAM-1 expression on endothelial cells. Imaging data confirmed that TNF-α-treated endothelial cells transfected with ICAM-1 or VCAM-1 siRNAs did not establish stable contacts with NK cells. Taken together, our data suggest that CCL2, CCL7, ICAM-1, and VCAM-1 expressed by endothelial cells will be potential targets to guide adequate interaction with NK cells, which is a crucial step for NK cell homing to the tumor microenvironment.


Asunto(s)
Molécula 1 de Adhesión Intercelular , Molécula 1 de Adhesión Celular Vascular , Humanos , Molécula 1 de Adhesión Celular Vascular/metabolismo , Molécula 1 de Adhesión Intercelular/metabolismo , Células Endoteliales/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Endotelio Vascular/metabolismo , Células Asesinas Naturales/metabolismo , Células Cultivadas , Quimiocina CCL7/metabolismo , Quimiocina CCL2/metabolismo
5.
Sensors (Basel) ; 21(17)2021 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-34502742

RESUMEN

Here, we introduce the current stage and future directions of the wireless infrastructure of the Korea Research Environment Open NETwork (KREONET), a representative national research and education network in Korea. In 2018, ScienceLoRa, a pioneering wireless network infrastructure for scientific applications based on low-power wide-area network technology, was launched. Existing in-service applications in monitoring regions, research facilities, and universities prove the effectiveness of using wireless infrastructure in scientific areas. Furthermore, to support the more stringent requirements of various scientific scenarios, ScienceLoRa is evolving toward ScienceIoT by employing high-performance wireless technology and distributed computing capability. Specifically, by accommodating a private 5G network and an integrated edge computing platform, ScienceIoT is expected to support cutting-edge scientific applications requiring high-throughput and distributed data processing.


Asunto(s)
Red Social , Tecnología Inalámbrica , República de Corea
6.
Cyborg Bionic Syst ; 2021: 9843894, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-36285126

RESUMEN

The soft robot manipulator is attracting attention in the surgical fields with its intrinsic softness, lightness in its weight, and safety toward the human organ. However, it cannot be used widely because of its difficulty of control. To control a soft robot manipulator accurately, shape sensing is essential. This paper presents a method of estimating the shape of a soft robot manipulator by using a skin-type stretchable sensor composed of a multiwalled carbon nanotube (MWCNT) and silicone (p7670). The sensor can be easily fabricated and applied by simply attaching it to the surface of the soft manipulator. In its fabrication, MWCNT is sprayed on a teflon sheet, and liquid-state silicone is poured on it. After curing, we turn it over and cover it with another silicone layer. The sensor is fabricated with a sandwich structure to decrease the hysteresis of the sensor. After calibration and determining the relationship between the resistance of the sensor and the strain, three sensors are attached at 120° intervals. Using the obtained data, the curvature of the manipulator is calculated, and the entire shape is reconstructed. To validate its accuracy, the estimated shape is compared with the camera data. We experiment with three, six, and nine sensors attached, and the result of the error of shape estimation is compared. As a result, the minimum tip position error is approximately 8.9 mm, which corresponded to 4.45% of the total length of the manipulator when using nine sensors.

7.
J Exerc Rehabil ; 14(2): 289-293, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29740565

RESUMEN

The purpose of this study is to verify the effects of aquatic exercise on the health-related physical fitness, blood fat, and immune functions of children with disabilities. To achieve the aforementioned purpose, the researchers studied 10 children with grade 1 or grade 2 disabilities who do not exercise regularly. The researchers used SPSS 21.0 to calculate the averages and standard deviations of the data and performed a paired t-test to verify the differences in averages before and after an exercise. The study showed significant differences in lean body weight, muscular strength, cardiovascular endurance, flexibility, and muscular endurance. The researchers found statistically significant differences in triglyceride as well as in immunoglobulin G. The findings suggest that aquatic exercise affects the health-related physical fitness, blood fat, and immune functions of children with disabilities.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...