Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 6550, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39095365

RESUMEN

The cardiac conduction system (CCS) is a network of specialized cardiomyocytes that coordinates electrical impulse generation and propagation for synchronized heart contractions. Although the components of the CCS, including the sinoatrial node, atrioventricular node, His bundle, bundle branches, and Purkinje fibers, were anatomically discovered more than 100 years ago, their molecular constituents and regulatory mechanisms remain incompletely understood. Here, we demonstrate the transcriptomic landscape of the postnatal mouse CCS at a single-cell resolution with spatial information. Integration of single-cell and spatial transcriptomics uncover region-specific markers and zonation patterns of expression. Network inference shows heterogeneous gene regulatory networks across the CCS. Notably, region-specific gene regulation is recapitulated in vitro using neonatal mouse atrial and ventricular myocytes overexpressing CCS-specific transcription factors, Tbx3 and/or Irx3. This finding is supported by ATAC-seq of different CCS regions, Tbx3 ChIP-seq, and Irx motifs. Overall, this study provides comprehensive molecular profiles of the postnatal CCS and elucidates gene regulatory mechanisms contributing to its heterogeneity.


Asunto(s)
Sistema de Conducción Cardíaco , Proteínas de Homeodominio , Miocitos Cardíacos , Proteínas de Dominio T Box , Animales , Proteínas de Dominio T Box/genética , Proteínas de Dominio T Box/metabolismo , Ratones , Miocitos Cardíacos/metabolismo , Sistema de Conducción Cardíaco/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Redes Reguladoras de Genes , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Regulación de la Expresión Génica , Animales Recién Nacidos , Análisis de la Célula Individual , Transcriptoma , Ramos Subendocárdicos/metabolismo , Ramos Subendocárdicos/fisiología , Nodo Atrioventricular/metabolismo , Nodo Sinoatrial/metabolismo , Fascículo Atrioventricular/metabolismo
3.
JCI Insight ; 8(2)2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36472923

RESUMEN

Elevated circulating dipeptidyl peptidase-4 (DPP4) is a biomarker for liver disease, but its involvement in gluconeogenesis and metabolic associated fatty liver disease progression remains unclear. Here, we identified that DPP4 in hepatocytes but not TEK receptor tyrosine kinase-positive endothelial cells regulates the local bioactivity of incretin hormones and gluconeogenesis. However, the complete absence of DPP4 (Dpp4-/-) in aged mice with metabolic syndrome accelerates liver fibrosis without altering dyslipidemia and steatosis. Analysis of transcripts from the livers of Dpp4-/- mice displayed enrichment for inflammasome, p53, and senescence programs compared with littermate controls. High-fat, high-cholesterol feeding decreased Dpp4 expression in F4/80+ cells, with only minor changes in immune signaling. Moreover, in a lean mouse model of severe nonalcoholic fatty liver disease, phosphatidylethanolamine N-methyltransferase mice, we observed a 4-fold increase in circulating DPP4, in contrast with previous findings connecting DPP4 release and obesity. Last, we evaluated DPP4 levels in patients with hepatitis C infection with dysglycemia (Homeostatic Model Assessment of Insulin Resistance > 2) who underwent direct antiviral treatment (with/without ribavirin). DPP4 protein levels decreased with viral clearance; DPP4 activity levels were reduced at long-term follow-up in ribavirin-treated patients; but metabolic factors did not improve. These data suggest elevations in DPP4 during hepatitis C infection are not primarily regulated by metabolic disturbances.


Asunto(s)
Hepatitis C , Enfermedad del Hígado Graso no Alcohólico , Ratones , Animales , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Glucosa/metabolismo , Péptido 1 Similar al Glucagón/metabolismo , Dipeptidil Peptidasa 4/metabolismo , Células Endoteliales/metabolismo , Ribavirina/metabolismo , Hepatocitos/metabolismo
4.
Nat Cardiovasc Res ; 2(2): 174-191, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38665902

RESUMEN

Cardiac metabolism is deranged in heart failure, but underlying mechanisms remain unclear. Here, we show that lysine demethylase 8 (Kdm8) maintains an active mitochondrial gene network by repressing Tbx15, thus preventing dilated cardiomyopathy leading to lethal heart failure. Deletion of Kdm8 in mouse cardiomyocytes increased H3K36me2 with activation of Tbx15 and repression of target genes in the NAD+ pathway before dilated cardiomyopathy initiated. NAD+ supplementation prevented dilated cardiomyopathy in Kdm8 mutant mice, and TBX15 overexpression blunted NAD+-activated cardiomyocyte respiration. Furthermore, KDM8 was downregulated in human hearts affected by dilated cardiomyopathy, and higher TBX15 expression defines a subgroup of affected hearts with the strongest downregulation of genes encoding mitochondrial proteins. Thus, KDM8 represses TBX15 to maintain cardiac metabolism. Our results suggest that epigenetic dysregulation of metabolic gene networks initiates myocardium deterioration toward heart failure and could underlie heterogeneity of dilated cardiomyopathy.

5.
Int J Obes (Lond) ; 46(11): 2029-2039, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36115924

RESUMEN

OBJECTIVE: Obesity, a leading cause of several metabolic abnormalities, is mainly caused by imbalanced energy homeostasis. IRX3 and IRX5 have been suggested as genetic determinants of obesity in connection with the intronic variants of the FTO gene, the strongest genetic risk factor of polygenic obesity in humans. Although the causal effects of Irx3 and its cooperation with Irx5 in obesity and associated metabolic abnormalities have been demonstrated in vivo, the function of Irx5 in energy homeostasis remains unclear. Here we aim to decipher the actions of Irx5 in the regulation of obesity and metabolic abnormalities. METHODS: We employed a mouse model homozygous for an Irx5-knockout (Irx5KO) allele and determined its metabolic phenotype in the presence or absence of a high-fat diet challenge. To investigate the function of Irx5 in the regulation of energy homeostasis, adipose thermogenesis and hypothalamic leptin response were assessed, and single-cell RNA sequencing (scRNA-seq) in the hypothalamic arcuate-median eminence (ARC-ME) was conducted. RESULTS: Irx5KO mice were leaner and resistant to diet-induced obesity as well as associated metabolic abnormalities, primarily through loss of adiposity. Assessments of energy expenditure and long-term dietary intake revealed that an increase in basal metabolic rate with adipose thermogenesis and a reduction of food intake with improved hypothalamic leptin response in Irx5KO mice may contribute to the anti-obesity effects. Utilizing scRNA-seq and marker gene analyses, we demonstrated the number of ARC-ME neurons was elevated in Irx5KO mice, suggesting a direct role for Irx5 in hypothalamic feeding control. CONCLUSIONS: Our study demonstrates that Irx5 is a genetic factor determining body mass/composition and obesity and regulates both energy expenditure and intake.


Asunto(s)
Leptina , Obesidad , Humanos , Animales , Ratones , Leptina/metabolismo , Obesidad/genética , Obesidad/metabolismo , Dieta Alta en Grasa , Hipotálamo/metabolismo , Metabolismo Energético/genética , Ratones Noqueados , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo
6.
J Vis Exp ; (185)2022 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-35969083

RESUMEN

Heart disease is the leading cause of morbidity and mortality worldwide. Due to their low cost, ease of handling, and abundance of transgenic strains, rodents have become essential models for cardiovascular research. However, spontaneous lethal cardiac arrhythmias that often cause mortality in heart disease patients are rare in rodent models of heart disease. This is primarily due to the species differences in cardiac electrical properties between human and rodents and poses a challenge to the study of cardiac arrhythmias using rodents. This protocol describes an approach to enable efficient transgene expression in mouse and rat ventricular myocardium using echocardiography-guided intramuscular injections of recombinant virus (adenovirus and adeno-associated virus). This work also outlines a method to enable reliable assessment of cardiac susceptibility to arrhythmias using isolated, Langendorff-perfused mouse and rat hearts with both adrenergic and programmed electrical stimulations. These techniques are critical for studying heart rhythm disorders associated with adverse cardiac remodeling after injuries, such as myocardial infarction.


Asunto(s)
Arritmias Cardíacas , Transgenes , Animales , Animales Modificados Genéticamente , Arritmias Cardíacas/fisiopatología , Modelos Animales de Enfermedad , Corazón , Humanos , Ratones , Miocardio/metabolismo , Ratas
7.
Mol Metab ; 61: 101494, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35421611

RESUMEN

OBJECTIVE: Aberrant ketogenesis is correlated with the degree of steatosis in non-alcoholic fatty liver disease (NAFLD) patients, and an inborn error of ketogenesis (mitochondrial HMG-CoA synthase deficiency) is commonly associated with the development of the fatty liver. Here we aimed to determine the impact of Hmgcs2-mediated ketogenesis and its modulations on the development and treatment of fatty liver disease. METHODS: Loss- and gain-of-ketogenic function models, achieved by Hmgcs2 knockout and overexpression, respectively, were utilized to investigate the role of ketogenesis in the hepatic lipid accumulation during postnatal development and in a high-fat diet-induced NAFLD mouse model. RESULTS: Ketogenic function was decreased in NAFLD mice with a reduction in Hmgcs2 expression. Mice lacking Hmgcs2 developed spontaneous fatty liver phenotype during postnatal development, which was rescued by a shift to a low-fat dietary composition via early weaning. Hmgcs2 heterozygous adult mice, which exhibited lower ketogenic activity, were more susceptible to diet-induced NAFLD development, whereas HMGCS2 overexpression in NAFLD mice improved hepatosteatosis and glucose homeostasis. CONCLUSIONS: Our study adds new knowledge to the field of ketone body metabolism and shows that Hmgcs2-mediated ketogenesis modulates hepatic lipid regulation under a fat-enriched nutritional environment. The regulation of hepatic ketogenesis may be a viable therapeutic strategy in the prevention and treatment of hepatosteatosis.


Asunto(s)
Dieta Alta en Grasa , Hidroximetilglutaril-CoA Sintasa , Cetosis , Enfermedad del Hígado Graso no Alcohólico , Animales , Dieta Alta en Grasa/efectos adversos , Humanos , Hidroximetilglutaril-CoA Sintasa/genética , Hidroximetilglutaril-CoA Sintasa/metabolismo , Cuerpos Cetónicos/genética , Cuerpos Cetónicos/metabolismo , Cetosis/genética , Cetosis/metabolismo , Lípidos , Ratones , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo
8.
Am J Physiol Heart Circ Physiol ; 322(5): H725-H741, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35245131

RESUMEN

Previous studies have established that transmural gradients of the fast transient outward K+ current (Ito,f) correlate with regional differences in action potential (AP) profile and excitation-contraction coupling (ECC) with high Ito,f expression in the epimyocardium (EPI) being associated with short APs and low contractility and vice versa. Herein, we investigated the effects of altering the Ito,f gradients on transmural contractile properties using mice lacking Irx5 (Irx5-KO) or lacking Kcnd2 (KV4.2-KO) or both. Irx5-KO mice exhibited decreased global LV contractility in association with elevated Ito,f, as well as reduced cell shortening and Ca2+ transient amplitudes in cardiomyocytes isolated from the endomyocardium (ENDO) but not in cardiomyocytes from the EPI. Transcriptional profiling revealed that the primary effect of Irx5 ablation on ECC-related genes was to increase Ito,f gene expression (i.e., Kcnd2 and Kcnip2) in the ENDO, but not the EPI. By contrast, KV4.2-KO mice showed selective increases in cell shortening and Ca2+ transients in isolated EPI cardiomyocytes, leading to enhanced ventricular contractility and mice lacking both Irx5 and Kcnd2 displayed elevated ventricular contractility, comparable to KV4.2-KO mice, demonstrating a dominant role of Irx5-dependent modulation of Ito,f in the regulation of contractility. Our findings show that the transmural electromechanical heterogeneities in the healthy ventricles depend on the Irx5-dependent Ito,f gradients. These observations provide a useful framework for assessing the molecular mechanisms underlying the alterations in contractile heterogeneity seen in the diseased heart.NEW & NOTEWORTHY Irx5 is a vital transcription factor that establishes the transmural heterogeneity of ventricular myocyte contractility, thereby ensuring proper contractile function in the healthy heart. Regional differences in excitation-contraction coupling in the ventricular myocardium are primarily mediated through the inverse relationship between Irx5 and the fast transient outward K+ current (Ito,f) across the ventricular wall.


Asunto(s)
Ventrículos Cardíacos , Miocardio , Potenciales de Acción/fisiología , Animales , Ventrículos Cardíacos/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Ratones , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Canales de Potasio Shal/genética , Canales de Potasio Shal/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
9.
Am J Physiol Heart Circ Physiol ; 322(3): H359-H372, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34995167

RESUMEN

Ischemic heart disease is the leading cause of death in the United States, Canada, and worldwide. Severe disease is characterized by coronary artery occlusion, loss of blood flow to the myocardium, and necrosis of tissue, with subsequent remodeling of the heart wall, including fibrotic scarring. The current study aims to demonstrate the efficacy of quantitating infarct size via two-dimensional (2-D) echocardiographic akinetic length and four-dimensional (4-D) echocardiographic infarct volume and surface area as in vivo analysis techniques. We further describe and evaluate a new surface area strain analysis technique for estimating myocardial infarction (MI) size after ischemic injury. Experimental MI was induced in mice via left coronary artery ligation. Ejection fraction and infarct size were measured through 2-D and 4-D echocardiography. Infarct size established via histology was compared with ultrasound-based metrics via linear regression analysis. Two-dimensional echocardiographic akinetic length (r = 0.76, P = 0.03), 4-D echocardiographic infarct volume (r = 0.85, P = 0.008), and surface area (r = 0.90, P = 0.002) correlate well with histology. Although both 2-D and 4-D echocardiography were reliable measurement techniques to assess infarct, 4-D analysis is superior in assessing asymmetry of the left ventricle and the infarct. Strain analysis performed on 4-D data also provides additional infarct sizing techniques, which correlate with histology (surface strain: r = 0.94, P < 0.001, transmural thickness: r = 0.76, P = 0.001). Two-dimensional echocardiographic akinetic length, 4-D echocardiography ultrasound, and strain provide effective in vivo methods for measuring fibrotic scarring after MI.NEW & NOTEWORTHY Our study supports that both 2-D and 4-D echocardiographic analysis techniques are reliable in quantifying infarct size though 4-D ultrasound provides a more holistic image of LV function and structure, especially after myocardial infarction. Furthermore, 4-D strain analysis correctly identifies infarct size and regional LV dysfunction after MI. Therefore, these techniques can improve functional insight into the impact of pharmacological interventions on the pathophysiology of cardiac disease.


Asunto(s)
Infarto del Miocardio/diagnóstico por imagen , Ultrasonografía/métodos , Algoritmos , Animales , Gasto Cardíaco , Femenino , Ventrículos Cardíacos/diagnóstico por imagen , Ventrículos Cardíacos/patología , Ventrículos Cardíacos/fisiopatología , Imagenología Tridimensional/métodos , Imagenología Tridimensional/normas , Masculino , Ratones , Infarto del Miocardio/patología , Infarto del Miocardio/fisiopatología , Sensibilidad y Especificidad , Ultrasonografía/normas
10.
Nat Cardiovasc Res ; 1(12): 1195-1214, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39196168

RESUMEN

Heart failure (HF) is a rising global cardiovascular epidemic driven by aging and chronic inflammation. As elderly populations continue to increase, precision treatments for age-related cardiac decline are urgently needed. Here we report that cardiac and blood expression of IGFBP7 is robustly increased in patients with chronic HF and in an HF mouse model. In a pressure overload mouse HF model, Igfbp7 deficiency attenuated cardiac dysfunction by reducing cardiac inflammatory injury, tissue fibrosis and cellular senescence. IGFBP7 promoted cardiac senescence by stimulating IGF-1R/IRS/AKT-dependent suppression of FOXO3a, preventing DNA repair and reactive oxygen species (ROS) detoxification, thereby accelerating the progression of HF. In vivo, AAV9-shRNA-mediated cardiac myocyte Igfbp7 knockdown indicated that myocardial IGFBP7 directly regulates pathological cardiac remodeling. Moreover, antibody-mediated IGFBP7 neutralization in vivo reversed IGFBP7-induced suppression of FOXO3a, restored DNA repair and ROS detoxification signals and attenuated pressure-overload-induced HF in mice. Consequently, selectively targeting IGFBP7-regulated senescence pathways may have broad therapeutic potential for HF.

11.
Sci Adv ; 7(44): eabh4503, 2021 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-34705510

RESUMEN

The paraventricular nucleus of the hypothalamus (PVH) contains a heterogeneous cluster of Sim1-expressing neurons critical for feeding regulation. Sim1 haploinsufficiency results in hyperphagic obesity with disruption of PVH neurons, yet the molecular profiles of PVH neurons and the mechanism underlying the defects of Sim1 haploinsufficiency are not well understood. By single-cell RNA sequencing, we identified two major populations of Sim1+ PVH neurons, which are differentially affected by Sim1 haploinsufficiency. The Iroquois homeobox genes Irx3 and Irx5 have been implicated in the hypothalamic control of energy homeostasis. We found that Irx3 and Irx5 are ectopically expressed in the Sim1+ PVH cells of Sim1+/− mice. By reducing their dosage and PVH-specific deletion of Irx3, we demonstrate that misexpression of Irx3 and Irx5 contributes to the defects of Sim1+/− mice. Our results illustrate abnormal hypothalamic activities of Irx3 and Irx5 as a central mechanism disrupting PVH development and feeding regulation in Sim1 haploinsufficiency.

12.
Nat Metab ; 3(5): 701-713, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33859429

RESUMEN

Obesity is mainly due to excessive food intake. IRX3 and IRX5 have been suggested as determinants of obesity in connection with the intronic variants of FTO, but how these genes contribute to obesity via changes in food intake remains unclear. Here, we show that mice doubly heterozygous for Irx3 and Irx5 mutations exhibit lower food intake with enhanced hypothalamic leptin response. By lineage tracing and single-cell RNA sequencing using the Ins2-Cre system, we identify a previously unreported radial glia-like neural stem cell population with high Irx3 and Irx5 expression in early postnatal hypothalamus and demonstrate that reduced dosage of Irx3 and Irx5 promotes neurogenesis in postnatal hypothalamus leading to elevated numbers of leptin-sensing arcuate neurons. Furthermore, we find that mice with deletion of Irx3 in these cells also exhibit a similar food intake and hypothalamic phenotype. Our results illustrate that Irx3 and Irx5 play a regulatory role in hypothalamic postnatal neurogenesis and leptin response.


Asunto(s)
Proteínas de Homeodominio/genética , Hipotálamo/metabolismo , Insulina/genética , Leptina/metabolismo , Neurogénesis/genética , Factores de Transcripción/genética , Animales , Conducta Alimentaria , Técnica del Anticuerpo Fluorescente , Regulación de la Expresión Génica , Estudios de Asociación Genética , Proteínas de Homeodominio/metabolismo , Ratones , Ratones Noqueados , Ratones Transgénicos , Células-Madre Neurales , Neuronas/metabolismo , Fenotipo , ARN Citoplasmático Pequeño/genética , Factores de Transcripción/metabolismo
14.
Front Genet ; 11: 590369, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33193730

RESUMEN

The global prevalence of metabolic disorders, such as obesity, diabetes and fatty liver disease, is dramatically increasing. Both genetic and environmental factors are well-known contributors to the development of these diseases and therefore, the study of epigenetics can provide additional mechanistic insight. Dietary interventions, including caloric restriction, intermittent fasting or time-restricted feeding, have shown promising improvements in patients' overall metabolic profiles (i.e., reduced body weight, improved glucose homeostasis), and an increasing number of studies have associated these beneficial effects with epigenetic alterations. In this article, we review epigenetic changes involved in both metabolic diseases and dietary interventions in primary metabolic tissues (i.e., adipose, liver, and pancreas) in hopes of elucidating potential biomarkers and therapeutic targets for disease prevention and treatment.

15.
Circulation ; 142(23): 2240-2258, 2020 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-33070627

RESUMEN

BACKGROUND: Cardiac hypertrophy is a key biological response to injurious stresses such as pressure overload and, when excessive, can lead to heart failure. Innate immune activation by danger signals, through intracellular pattern recognition receptors such as nucleotide-binding oligomerization domain 1 (Nod1) and its adaptor receptor-interacting protein 2 (RIP2), might play a major role in cardiac remodeling and progression to heart failure. We hypothesize that Nod1/RIP2 are major contributors to cardiac hypertrophy, but may not be sufficient to fully express the phenotype alone. METHODS: To elucidate the contribution of Nod1/RIP2 signaling to cardiac hypertrophy, we randomized Nod1-/-, RIP2-/-, or wild-type mice to transverse aortic constriction or sham operations. Cardiac hypertrophy, fibrosis, and cardiac function were examined in these mice. RESULTS: Nod1 and RIP2 proteins were upregulated in the heart after transverse aortic constriction, and this was paralleled by increased expression of mitochondrial proteins, including mitochondrial antiviral signaling protein (MAVS). Nod1-/- and RIP2-/- mice subjected to transverse aortic constriction exhibited better survival, improved cardiac function, and decreased cardiac hypertrophy. Downstream signal transduction pathways that regulate inflammation and fibrosis, including NF (nuclear factor) κB and MAPK (mitogen-activated protein kinase)-GATA4/p300, were reduced in both Nod1-/- and RIP2-/- mice after transverse aortic constriction compared with wild-type mice. Coimmunoprecipitation of extracted cardiac proteins and confocal immunofluorescence microscopy showed that Nod1/RIP2 interaction was robust and that this complex also included MAVS as an essential component. Suppression of MAVS expression attenuated the complex formation, NF κB signaling, and myocyte hypertrophy. Interrogation of mitochondrial function compared in the presence or ablation of MAVS revealed that MAVS serves to suppress mitochondrial energy output and mediate fission/fusion related dynamic changes. The latter is possibly linked to mitophagy during cardiomyocytes stress, which may provide an intriguing link between innate immune activation and mitochondrial energy balance under stress or injury conditions. CONCLUSIONS: We have identified that innate immune Nod1/RIP2 signaling is a major contributor to cardiac remodeling after stress. This process is critically joined by and regulated through the mitochondrial danger signal adapter MAVS. This novel complex coordinates remodeling, inflammatory response, and mitochondrial energy metabolism in stressed cardiomyocytes. Thus, Nod1/RIP2/MAVS signaling complex may represent an attractive new therapeutic approach toward heart failure.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/inmunología , Cardiomegalia/inmunología , Metabolismo Energético/fisiología , Inmunidad Innata/fisiología , Proteína Adaptadora de Señalización NOD1/inmunología , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor/inmunología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Animales Recién Nacidos , Cardiomegalia/metabolismo , Cardiomegalia/patología , Femenino , Humanos , Células Madre Pluripotentes Inducidas/inmunología , Células Madre Pluripotentes Inducidas/metabolismo , Masculino , Ratones , Ratones Noqueados , Proteína Adaptadora de Señalización NOD1/metabolismo , Proteína Serina-Treonina Quinasa 2 de Interacción con Receptor/metabolismo , Transducción de Señal/fisiología
16.
Nat Commun ; 11(1): 334, 2020 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-31953387

RESUMEN

Stomach and intestinal stem cells are located in discrete niches called the isthmus and crypt, respectively. Recent studies have demonstrated a surprisingly conserved role for Wnt signaling in gastrointestinal development. Although intestinal stromal cells secrete Wnt ligands to promote stem cell renewal, the source of stomach Wnt ligands is still unclear. Here, by performing single cell analysis, we identify gastrointestinal stromal cell populations with transcriptome signatures that are conserved between the stomach and intestine. In close proximity to epithelial cells, these perictye-like cells highly express telocyte and pericyte markers as well as Wnt ligands, and they are enriched for Hh signaling. By analyzing mice activated for Hh signaling, we show a conserved mechanism of GLI2 activation of Wnt ligands. Moreover, genetic inhibition of Wnt secretion in perictye-like stromal cells or stromal cells more broadly demonstrates their essential roles in gastrointestinal regeneration and development, respectively, highlighting a redundancy in gastrointestinal stem cell niches.


Asunto(s)
Tracto Gastrointestinal/metabolismo , Pruebas Genéticas , Nicho de Células Madre/genética , Células del Estroma/metabolismo , Animales , Autorrenovación de las Células/genética , Células Epiteliales/metabolismo , Tracto Gastrointestinal/citología , Homeostasis , Ligandos , Masculino , Ratones , Ratones Noqueados , Regeneración , Células del Estroma/citología , Telocitos/metabolismo , Transcriptoma , Proteínas Wnt/metabolismo , Vía de Señalización Wnt , Proteína Gli2 con Dedos de Zinc/metabolismo
17.
Front Physiol ; 11: 605671, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33424629

RESUMEN

Atrial Fibrillation (AF) is the most common supraventricular tachyarrhythmia that is typically associated with cardiovascular disease (CVD) and poor cardiovascular health. Paradoxically, endurance athletes are also at risk for AF. While it is well-established that persistent AF is associated with atrial fibrosis, hypertrophy and inflammation, intensely exercised mice showed similar adverse atrial changes and increased AF vulnerability, which required tumor necrosis factor (TNF) signaling, even though ventricular structure and function improved. To identify some of the molecular factors underlying the chamber-specific and TNF-dependent atrial changes induced by exercise, we performed transcriptome analyses of hearts from wild-type and TNF-knockout mice following exercise for 2 days, 2 or 6 weeks of exercise. Consistent with the central role of atrial stretch arising from elevated venous pressure in AF promotion, all 3 time points were associated with differential regulation of genes in atria linked to mechanosensing (focal adhesion kinase, integrins and cell-cell communications), extracellular matrix (ECM) and TNF pathways, with TNF appearing to play a permissive, rather than causal, role in gene changes. Importantly, mechanosensing/ECM genes were only enriched, along with tubulin- and hypertrophy-related genes after 2 days of exercise while being downregulated at 2 and 6 weeks, suggesting that early reactive strain-dependent remodeling with exercise yields to compensatory adjustments. Moreover, at the later time points, there was also downregulation of both collagen genes and genes involved in collagen turnover, a pattern mirroring aging-related fibrosis. By comparison, twofold fewer genes were differentially regulated in ventricles vs. atria, independently of TNF. Our findings reveal that exercise promotes TNF-dependent atrial transcriptome remodeling of ECM/mechanosensing pathways, consistent with increased preload and atrial stretch seen with exercise. We propose that similar preload-dependent mechanisms are responsible for atrial changes and AF in both CVD patients and athletes.

18.
J Vis Exp ; (153)2019 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-31840661

RESUMEN

Intermittent fasting (IF), a dietary intervention involving periodic energy restriction, has been considered to provide numerous benefits and counteract metabolic abnormalities. So far, different types of IF models with varying durations of fasting and feeding periods have been documented. However, interpreting the outcomes is challenging, as many of these models involve multifactorial contributions from both time- and calorie-restriction strategies. For example, the alternate day fasting model, often used as a rodent IF regimen, can result in underfeeding, suggesting that health benefits from this intervention are likely mediated via both caloric restriction and fasting-refeeding cycles. Recently, it has been successfully demonstrated that 2:1 IF, comprising 1 day of fasting followed by 2 days of feeding, can provide protection against diet-induced obesity and metabolic improvements without a reduction in overall caloric intake. Presented here is a protocol of this isocaloric 2:1 IF intervention in mice. Also described is a pair-feeding (PF) protocol required to examine a mouse model with altered eating behaviors, such as hyperphagia. Using the 2:1 IF regimen, it is demonstrated that isocaloric IF leads to reduced body weight gain, improved glucose homeostasis, and elevated energy expenditure. Thus, this regimen may be useful to investigate the health impacts of IF on various disease conditions.


Asunto(s)
Restricción Calórica/métodos , Ingestión de Energía/fisiología , Ayuno/metabolismo , Obesidad/dietoterapia , Obesidad/metabolismo , Animales , Dieta Alta en Grasa/efectos adversos , Metabolismo Energético/fisiología , Conducta Alimentaria/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/etiología
19.
J Pediatr Urol ; 15(6): 635-641, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31629667

RESUMEN

INTRODUCTION AND OBJECTIVE: The effects estrogen and testosterone have on penile wound healing are still uncertain. This study evaluated the effects of these hormones on the wound healing process of penile and non-penile skin in wild-type (Mus musculus species) 4-5-week-old mice. METHODOLOGY: Seventy wild-type Mus musculus species were randomly assigned to four groups control (n = 17), 1-week post-operative topical estrogen (n = 18), 1-week pre-operative testosterone (n = 17), and immediate post-operative testosterone (n = 18). Incisions were made on the ventrum of the penis and dorsal neck skin. On post-operative day 3, 7, and 14, incision sites were harvested. Evaluation was performed grossly for postsurgical penile edema and histologically for inflammatory cell concentration, presence of fibrinopurulent materials and distribution of collagen-fibroblastic cells. Each treatment group was compared at the three post-operative time points using the Fisher-Freeman--Halton exact test. CD34 and androgen receptor immunohistostaining was performed for between-group differences to assess microvascular density or vasodilatation and androgen receptor upregulation. RESULTS: In this study, the experiment noted significant penile edema on post-operative day 7 in the testosterone groups, whereas less edema in the estrogen group (P = 0.010; Figure). On histologic evaluation of the penile wounds, a significantly increased inflammatory cell concentration was noted for both pre-operative and post-operative testosterone groups on post-operative day 14 (P = 0.023). The estrogen group revealed significantly increased fibrinopurulent material on the 3rd and 7th post-operative days (P = 0.045 and P = 0.005, respectively). No significant between-group differences in the collagen-fibroblastic distribution were noted over the three-time phases. On histologic evaluation of the skin wounds, no significant differences were noted between the groups for inflammatory cell concentration and presence of fibrinopurulent materials. However, compared with the testosterone treatment groups, a significant higher collagen-fibroblast distribution was noted in the estrogen groups on post-operative day 3 and 14 (P = 0.001 and P = 0.044, respectively). CONCLUSION: Sex hormones, when given peri-operatively, may affect the wound healing process in mice. Testosterone appears to stimulate a prolonged inflammatory effect on penile wounds. Conversely, estrogen induces a fibrinopurulent congregation early in the penile wound healing process. For general skin healing, estrogen induces earlier collagen and fibroblast distribution, whereas testosterone has a delayed effect. The findings of this study should be further investigated in larger animal model with longer follow-up period.


Asunto(s)
Genitales/lesiones , Hormonas Esteroides Gonadales/farmacología , Cicatrización de Heridas/efectos de los fármacos , Animales , Modelos Animales de Enfermedad , Genitales/efectos de los fármacos , Genitales/patología , Masculino , Ratones
20.
Sci Rep ; 9(1): 2479, 2019 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-30792482

RESUMEN

Intermittent fasting (IF) is an effective dietary intervention to counteract obesity-associated metabolic abnormalities. Previously, we and others have highlighted white adipose tissue (WAT) browning as the main underlying mechanism of IF-mediated metabolic benefits. However, whether IF retains its efficacy in different models, such as genetically obese/diabetic animals, is unknown. Here, leptin-deficient ob/ob mice were subjected to 16 weeks of isocaloric IF, and comprehensive metabolic phenotyping was conducted to assess the metabolic effects of IF. Unlike our previous study, isocaloric IF-subjected ob/ob animals failed to exhibit reduced body weight gain, lower fat mass, or decreased liver lipid accumulation. Moreover, isocaloric IF did not result in increased thermogenesis nor induce WAT browning in ob/ob mice. These findings indicate that isocaloric IF may not be an effective approach for regulating body weight in ob/ob animals, posing the possible limitations of IF to treat obesity. However, despite the lack of improvement in insulin sensitivity, isocaloric IF-subjected ob/ob animals displayed improved glucose tolerance as well as higher postprandial insulin level, with elevated incretin expression, suggesting that isocaloric IF is effective in improving nutrient-stimulated insulin secretion. Together, this study uncovers the insulinotropic effect of isocaloric IF, independent of adipose thermogenesis, which is potentially complementary for the treatment of type 2 diabetes.


Asunto(s)
Ayuno/metabolismo , Obesidad/metabolismo , Termogénesis , Animales , Resistencia a la Insulina , Metabolismo de los Lípidos , Masculino , Ratones , Ratones Obesos , Obesidad/dietoterapia , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA