Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 18 de 18
1.
Heart Rhythm O2 ; 4(4): 268-274, 2023 Apr.
Article En | MEDLINE | ID: mdl-37124559

Background: Long QT syndrome (LQTS) stems from pathogenic variants in KCNQ1 (LQT1), KCNH2 (LQT2), or SCN5A (LQT3) and is characterized by action potential duration (APD) prolongation. Inhibition of serum and glucocorticoid regulated kinase-1 (SGK1) is proposed as a novel therapeutic for LQTS. Objective: The study sought to test the efficacy of novel, selective SGK1 inhibitors in induced pluripotent stem cell-derived cardiomyocyte (iPSC-CM) models of LQTS. Methods: The mexiletine (MEX)-sensitive SCN5A-P1332L iPSC-CMs were tested initially compared with a CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 SCN5A-P1332L variant-corrected isogenic control (IC). The SGK1-I1 therapeutic efficacy, compared with MEX, was tested for APD at 90% repolarization (APD90) shortening in SCN5A-P1332L, SCN5A-R1623Q, KCNH2-G604S, and KCNQ1-V254M iPSC-CMs using FluoVolt. Results: The APD90 was prolonged in SCN5A-P1332L iPSC-CMs compared with its IC (646 ± 7 ms vs 482 ± 23 ms; P < .0001). MEX shortened the APD90 to 560 ± 7 ms (52% attenuation, P < .0001). SGK1-I1 shortened the APD90 to 518 ± 5 ms (78% attenuation, P < .0001) but did not shorten the APD90 in the IC. SGK1-I1 shortened the APD90 of the SCN5A-R1623Q iPSC-CMs (753 ± 8 ms to 475 ± 19 ms compared with 558 ± 19 ms with MEX), the KCNH2-G604S iPSC-CMs (666 ± 10 ms to 574 ± 18 ms vs 538 ± 15 ms after MEX), and the KCNQ1-V254M iPSC-CMs (544 ± 10 ms to 475 ± 11ms; P = .0004). Conclusions: Therapeutically inhibiting SGK1 effectively shortens the APD in human iPSC-CM models of the 3 major LQTS genotypes. These preclinical data support development of SGK1 inhibitors as novel, first-in-class therapy for patients with congenital LQTS.

2.
Heart Rhythm ; 20(5): 709-717, 2023 05.
Article En | MEDLINE | ID: mdl-36731785

BACKGROUND: Pathogenic variants in the SCN5A-encoded Nav1.5 sodium channel cause type 3 long QT syndrome (LQT3). We present the case of an infant with severe LQT3 who was refractory to multiple pharmacologic therapies as well as bilateral stellate ganglionectomy. The patient's novel variant, p.F1760C-SCN5A, involves a critical residue of the Nav1.5's local anesthetic binding domain. OBJECTIVE: The purpose of this study was to characterize functionally the p.F1760C-SCN5A variant using TSA-201 and patient-specific induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs). METHODS: Whole-cell patch clamp was used to assess p.F1760C-SCN5A associated sodium currents with/without lidocaine (Lido), flecainide, and phenytoin (PHT) in TSA-201 cells. p.F1760C-SCN5A and CRISPR-Cas9 variant-corrected isogenic control (IC) iPSC-CMs were generated. FluoVolt voltage dye was used to measure the action potential duration (APD) with/without mexiletine or PHT. RESULTS: V1/2 of inactivation was right-shifted significantly in F1760C cells (-72.2 ± 0.7 mV) compared to wild-type (WT) cells (-86.3 ± 0.9 mV; P <.0001) resulting in a marked increase in window current. F1760C increased sodium late current 2-fold from 0.18% ± 0.04% of peak in WT to 0.49% ± 0.07% of peak in F1760C (P = .0005). Baseline APD to 90% repolarization (APD90) was increased markedly in F1760C iPSC-CMs (601 ± 4 ms) compared to IC iPSC-CMs (423 ± 15 ms; P <.0001). However, 4-hour treatment with 10 µM mexiletine failed to shorten APD90, and treatment with 5µM PHT significantly decreased APD90 of F1760C iPSC-CMs (453 ± 6 ms; P <.0001). CONCLUSION: PHT rescued electrophysiological phenotype and APD of a novel p.F1760C-SCN5A variant. The antiepileptic drug PHT may be an effective alternative therapeutic for the treatment of LQT3, especially for variants that disrupt the Lido/mexiletine binding site.


Anti-Arrhythmia Agents , Long QT Syndrome , Mexiletine , Humans , Infant , Anti-Arrhythmia Agents/pharmacology , Anti-Arrhythmia Agents/therapeutic use , Lidocaine , Long QT Syndrome/drug therapy , Long QT Syndrome/genetics , Long QT Syndrome/therapy , Mexiletine/therapeutic use , Mexiletine/pharmacology , NAV1.5 Voltage-Gated Sodium Channel/drug effects , NAV1.5 Voltage-Gated Sodium Channel/genetics , NAV1.5 Voltage-Gated Sodium Channel/metabolism
3.
Heart Rhythm ; 20(4): 589-595, 2023 04.
Article En | MEDLINE | ID: mdl-36610526

BACKGROUND: Drug-induced QT prolongation (DI-QTP) is a clinical entity in which administration of a human ether-à-go-go-related gene/rapid delayed rectifier potassium current blocker such as dofetilide prolongs the cardiac action potential duration (APD) and the QT interval on the electrocardiogram. Inhibition of serum and glucocorticoid regulated kinase-1 (SGK1) reduces the APD at 90% repolarization (APD90) in induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) derived from patients with congenital long QT syndrome. OBJECTIVE: Here, we test the efficacy of 2 novel SGK1 inhibitors-SGK1-I1 and SGK1-I2-in iPSC-CM models of dofetilide-induced APD prolongation. METHODS: Normal iPSC-CMs were treated with dofetilide to produce a DI-QTP iPSC-CM model. SGK1-I1's and SGK1-I2's therapeutic efficacy for shortening the dofetilide-induced APD90 prolongation was compared to mexiletine. The APD90 values were recorded 4 hours after treatment using a voltage-sensing dye. RESULTS: The APD90 was prolonged in normal iPSC-CMs treated with dofetilide (673 ± 8 ms vs 436 ± 4 ms; P < .0001). While 10 mM mexiletine shortened the APD90 of dofetilide-treated iPSC-CMs from 673 ± 4 to 563 ± 8 ms (46% attenuation; P < .0001), 30 nM of SGK1-I1 shortened the APD90 from 673 ± 8 to 502 ± 7 ms (72% attenuation; P < .0001). Additionally, 300 nM SGK1-I2 shortened the APD90 of dofetilide-treated iPSC-CMs from 673 ± 8 to 460 ± 7 ms (90% attenuation; P < .0001). CONCLUSION: These novel SGK1-Is substantially attenuated the pathological APD prolongation in a human heart cell model of DI-QTP. These preclinical data support the development of this therapeutic strategy to counter and neutralize DI-QTP, thereby increasing the safety profile for patients receiving drugs with torsadogenic potential.


Long QT Syndrome , Mexiletine , Humans , Mexiletine/pharmacology , Action Potentials , Long QT Syndrome/chemically induced , Long QT Syndrome/drug therapy , Long QT Syndrome/pathology , Sulfonamides/adverse effects , Myocytes, Cardiac/pathology
4.
Int J Mol Sci ; 22(11)2021 May 23.
Article En | MEDLINE | ID: mdl-34071043

A de novo missense variant in Rag GTPase protein C (RagCS75Y) was recently identified in a syndromic dilated cardiomyopathy (DCM) patient. However, its pathogenicity and the related therapeutic strategy remain unclear. We generated a zebrafish RragcS56Y (corresponding to human RagCS75Y) knock-in (KI) line via TALEN technology. The KI fish manifested cardiomyopathy-like phenotypes and poor survival. Overexpression of RagCS75Y via adenovirus infection also led to increased cell size and fetal gene reprogramming in neonatal rat ventricle cardiomyocytes (NRVCMs), indicating a conserved mechanism. Further characterization identified aberrant mammalian target of rapamycin complex 1 (mTORC1) and transcription factor EB (TFEB) signaling, as well as metabolic abnormalities including dysregulated autophagy. However, mTOR inhibition failed to ameliorate cardiac phenotypes in the RagCS75Y cardiomyopathy models, concomitant with a failure to promote TFEB nuclear translocation. This observation was at least partially explained by increased and mTOR-independent physical interaction between RagCS75Y and TFEB in the cytosol. Importantly, TFEB overexpression resulted in more nuclear TFEB and rescued cardiomyopathy phenotypes. These findings suggest that S75Y is a pathogenic gain-of-function mutation in RagC that leads to cardiomyopathy. A primary pathological step of RagCS75Y cardiomyopathy is defective mTOR-TFEB signaling, which can be corrected by TFEB overexpression, but not mTOR inhibition.


Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/physiology , Cardiomyopathy, Dilated/genetics , Gain of Function Mutation , Monomeric GTP-Binding Proteins/genetics , Mutation, Missense , Point Mutation , TOR Serine-Threonine Kinases/antagonists & inhibitors , Active Transport, Cell Nucleus , Amino Acid Substitution , Animals , Autophagy , Base Sequence , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/biosynthesis , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Cardiomyopathy, Dilated/therapy , Cells, Cultured , Gene Knock-In Techniques , Gene Knockout Techniques , Heart Ventricles/cytology , Humans , Mice , Monomeric GTP-Binding Proteins/physiology , Myocytes, Cardiac/metabolism , Phenotype , Rats, Wistar , Recombinant Proteins/metabolism , Signal Transduction , Transcription Activator-Like Effector Nucleases , Zebrafish , Zebrafish Proteins/deficiency , Zebrafish Proteins/genetics , Zebrafish Proteins/physiology
5.
Circ Genom Precis Med ; 14(3): e003234, 2021 06.
Article En | MEDLINE | ID: mdl-34003017

BACKGROUND: Prior epidemiological studies demonstrated that the p.D85N-Potassium voltage-gated channel subfamily E member 1 (KCNE1) common variant reduces repolarization reserve and predisposes to drug-induced QT prolongation/torsades de pointes. We sought to develop a cellular model for drug-induced long QT syndrome using a patient-specific induced pluripotent stem cell-derived cardiomyocyte (iPSC-CM). METHODS: p.D85N-KCNE1 iPSCs were generated from a 23-year-old female with an exaggerated heart rate-corrected QT interval response to metoclopramide (ΔQTc of 160 ms). Clustered regularly interspaced short palindromic repeats-associated 9 technology was used to generate gene-corrected isogenic iPSCs. Field potential duration and action potential duration (APD) were measured from iPSC-CMs. RESULTS: At baseline, p.D85N-KCNE1 iPSC-CMs displayed significantly longer field potential duration (281±15 ms, n=13 versus 223±8.6 ms, n=14, P<0.01) and action potential duration at 90% repolarization (APD90; 579±22 ms, n=24 versus 465±33 ms, n=26, P<0.01) than isogenic-control iPSC-CMs. Dofetilide at a concentration of 2 nM increased significantly field potential duration (379±20 ms, n=13, P<0.01) and APD90 (666±11 ms, n=46, P<0.01) in p.D85N-KCNE1 iPSC-CMs but not in isogenic-control. The effect of dofetilide on APD90 (616±54 ms, n=7 versus 526±54 ms, n=10, P<0.05) was confirmed by Patch-clamp. Interestingly, treatment of p.D85N-KCNE1 iPSC-CMs with estrogen at a concentration of 1 nM exaggerated further dofetilide-induced APD90 prolongation (696±9 ms, n=81, P<0.01) and caused more early afterdepolarizations (11.7%) compared with isogenic control (APD90: 618±8 ms, n=115 and early afterdepolarizations: 2.6%, P<0.05). CONCLUSIONS: This iPSC-CM study provides further evidence that the p.D85N-KCNE1 common variant in combination with environmental factors such as QT prolonging drugs and female sex is proarrhythmic.


Induced Pluripotent Stem Cells/metabolism , Long QT Syndrome , Metoclopramide/adverse effects , Mutation, Missense , Myocytes, Cardiac/metabolism , Potassium Channels, Voltage-Gated , Adult , Amino Acid Substitution , Female , Gastroesophageal Reflux/genetics , Gastroesophageal Reflux/metabolism , Gastroesophageal Reflux/therapy , Humans , Long QT Syndrome/chemically induced , Long QT Syndrome/genetics , Long QT Syndrome/metabolism , Metoclopramide/administration & dosage , Potassium Channels, Voltage-Gated/genetics , Potassium Channels, Voltage-Gated/metabolism
6.
Sci Adv ; 6(5): eaay2939, 2020 01.
Article En | MEDLINE | ID: mdl-32064346

To uncover the genetic basis of anthracycline-induced cardiotoxicity (AIC), we recently established a genetic suppressor screening strategy in zebrafish. Here, we report the molecular and cellular nature of GBT0419, a salutary modifier mutant that affects retinoid x receptor alpha a (rxraa). We showed that endothelial, but not myocardial or epicardial, RXRA activation confers AIC protection. We then identified isotretinoin and bexarotene, two FDA-approved RXRA agonists, which exert cardioprotective effects. The therapeutic effects of these drugs only occur when administered during early, but not late, phase of AIC or as pretreatment. Mechanistically, these spatially- and temporally-predominant benefits of RXRA activation can be ascribed to repair of damaged endothelial cell-barrier via regulating tight-junction protein Zonula occludens-1. Together, our study provides the first in vivo genetic evidence supporting RXRA as the therapeutic target for AIC, and uncovers a previously unrecognized spatiotemporally-predominant mechanism that shall inform future translational efforts.


Cardiotoxicity/drug therapy , Heart/drug effects , Retinoid X Receptor alpha/genetics , Zonula Occludens-1 Protein/genetics , Animals , Bexarotene/pharmacology , Cardiotonic Agents/pharmacology , Cardiotoxicity/etiology , Cardiotoxicity/genetics , Disease Models, Animal , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Heart/physiopathology , Humans , Isotretinoin/pharmacology , Myocardium/metabolism , Myocardium/pathology , Neoplasms/complications , Neoplasms/drug therapy , Pericardium/drug effects , Retinoid X Receptor alpha/agonists , Zebrafish
7.
Circ Res ; 121(10): 1182-1191, 2017 Oct 27.
Article En | MEDLINE | ID: mdl-28835357

RATIONALE: AMPK (AMP-activated protein kinase) is a heterotrimeric protein that plays an important role in energy homeostasis and cardioprotection. Two isoforms of each subunit are expressed in the heart, but the isoform-specific function of AMPK remains unclear. OBJECTIVE: We sought to determine the role of γ2-AMPK in cardiac stress response using bioengineered cell lines and mouse models containing either isoform of the γ-subunit in the heart. METHODS AND RESULTS: We found that γ2 but not γ1 or γ3 subunit translocated into nucleus on AMPK activation. Nuclear accumulation of AMPK complexes containing γ2-subunit phosphorylated and inactivated RNA Pol I (polymerase I)-associated transcription factor TIF-IA at Ser-635, precluding the assembly of transcription initiation complexes for rDNA. The subsequent downregulation of pre-rRNA level led to attenuated endoplasmic reticulum (ER) stress and cell death. Deleting γ2-AMPK led to increases in pre-rRNA level, ER stress markers, and cell death during glucose deprivation, which could be rescued by inhibition of rRNA processing or ER stress. To study the function of γ2-AMPK in the heart, we generated a mouse model with cardiac-specific deletion of γ2-AMPK (cardiac knockout [cKO]). Although the total AMPK activity was unaltered in cKO hearts because of upregulation of γ1-AMPK, the lack of γ2-AMPK sensitizes the heart to myocardial ischemia/reperfusion injury. The cKO failed to suppress pre-rRNA level during ischemia/reperfusion and showed a greater infarct size. Conversely, cardiac-specific overexpression of γ2-AMPK decreased ribosome biosynthesis and ER stress during ischemia/reperfusion insult, and the infarct size was reduced. CONCLUSIONS: The γ2-AMPK translocates into the nucleus to suppress pre-rRNA transcription and ribosome biosynthesis during stress, thus ameliorating ER stress and cell death. Increased γ2-AMPK activity is required to protect against ischemia/reperfusion injury. Our study reveals an isoform-specific function of γ2-AMPK in modulating ribosome biosynthesis, cell survival, and cardioprotection.


AMP-Activated Protein Kinases/metabolism , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/prevention & control , Ribosomes/metabolism , Active Transport, Cell Nucleus/physiology , Animals , COS Cells , Cell Death/physiology , Chlorocebus aethiops , Enzyme Activation/physiology , HEK293 Cells , Humans , Mice , Mice, Knockout , Mice, Transgenic , Myocardial Reperfusion Injury/pathology , Protein Biosynthesis/physiology
8.
Cell Metab ; 25(2): 374-385, 2017 02 07.
Article En | MEDLINE | ID: mdl-28178567

Elevated levels of branched-chain amino acids (BCAAs) have recently been implicated in the development of cardiovascular and metabolic diseases, but the molecular mechanisms are unknown. In a mouse model of impaired BCAA catabolism (knockout [KO]), we found that chronic accumulation of BCAAs suppressed glucose metabolism and sensitized the heart to ischemic injury. High levels of BCAAs selectively disrupted mitochondrial pyruvate utilization through inhibition of pyruvate dehydrogenase complex (PDH) activity. Furthermore, downregulation of the hexosamine biosynthetic pathway in KO hearts decreased protein O-linked N-acetylglucosamine (O-GlcNAc) modification and inactivated PDH, resulting in significant decreases in glucose oxidation. Although the metabolic remodeling in KO did not affect baseline cardiac energetics or function, it rendered the heart vulnerable to ischemia-reperfusion injury. Promoting BCAA catabolism or normalizing glucose utilization by overexpressing GLUT1 in the KO heart rescued the metabolic and functional outcome. These observations revealed a novel role of BCAA catabolism in regulating cardiac metabolism and stress response.


Amino Acids, Branched-Chain/metabolism , Glucose/metabolism , Myocardium/metabolism , Myocardium/pathology , Reperfusion Injury/metabolism , Acetylglucosamine/metabolism , Animals , Glycosylation , Heart Function Tests , Mice, Inbred C57BL , Mice, Knockout , Mitochondria, Heart/metabolism , Pyruvate Dehydrogenase Complex/metabolism , Pyruvic Acid/metabolism , Reperfusion Injury/physiopathology
9.
Development ; 143(24): 4713-4722, 2016 12 15.
Article En | MEDLINE | ID: mdl-27836965

Titin-truncating variants (TTNtvs) are the major cause of dilated cardiomyopathy (DCM); however, allelic heterogeneity (TTNtvs in different exons) results in variable phenotypes, and remains a major hurdle for disease diagnosis and therapy. Here, we generated a panel of ttn mutants in zebrafish. Four single deletion mutants in ttn.2 or ttn.1 resulted in four phenotypes and three double ttn.2/ttn.1 mutants exhibited more severe phenotypes in somites. Protein analysis identified ttnxu071 as a near-null mutant and the other six mutants as hypomorphic alleles. Studies of ttnxu071 uncovered a function of titin in guiding the assembly of nascent myofibrils from premyofibrils. By contrast, sarcomeres were assembled in the hypomorphic ttn mutants but either became susceptible to biomechanical stresses such as contraction or degenerated during development. Further genetic studies indicated that the exon usage hypothesis, but not the toxic peptide or the Cronos hypothesis, could account for these exon-dependent effects. In conclusion, we modeled TTNtv allelic heterogeneity during development and paved the way for future studies to decipher allelic heterogeneity in adult DCM.


Connectin/genetics , Myofibrils/metabolism , Sarcomeres/metabolism , Zebrafish/growth & development , Alleles , Allelic Imbalance/genetics , Animals , Animals, Genetically Modified , Cardiomyopathy, Dilated/genetics , Connectin/metabolism , Sarcomeres/genetics , Sequence Deletion/genetics
10.
J Mol Cell Cardiol ; 100: 64-71, 2016 Nov.
Article En | MEDLINE | ID: mdl-27693463

RATIONALE: Diastolic dysfunction is a common feature in many heart failure patients with preserved ejection fraction and has been associated with altered myocardial metabolism in hypertensive and diabetic patients. Therefore, metabolic interventions to improve diastolic function are warranted. In mice with a germline cardiac-specific deletion of acetyl CoA carboxylase 2 (ACC2), systolic dysfunction induced by pressure-overload was prevented by maintaining cardiac fatty acid oxidation (FAO). However, it has not been evaluated whether this strategy would prevent the development of diastolic dysfunction in the adult heart. OBJECTIVE: To test the hypothesis that augmenting cardiac FAO is protective against angiotensin II (AngII)-induced diastolic dysfunction in an adult mouse heart. METHODS AND RESULTS: We generated a mouse model to induce cardiac-specific deletion of ACC2 in adult mice. Tamoxifen treatment (20mg/kg/day for 5days) was sufficient to delete ACC2 protein and increase cardiac FAO by 50% in ACC2 flox/flox-MerCreMer+ mice (iKO). After 4weeks of AngII (1.1mg/kg/day), delivered by osmotic mini-pumps, iKO mice showed normalized E/E' and E'/A' ratios compared to AngII treated controls (CON). The prevention of diastolic dysfunction in iKO-AngII was accompanied by maintained FAO and reduced glycolysis and anaplerosis. Furthermore, iKO-AngII hearts had a~50% attenuation of cardiac hypertrophy and fibrosis compared to CON. In addition, maintenance of FAO in iKO hearts suppressed AngII-associated increases in oxidative stress and sustained mitochondrial respiratory complex activities. CONCLUSION: These data demonstrate that impaired FAO is a contributor to the development of diastolic dysfunction induced by AngII. Maintenance of FAO in this model leads to an attenuation of hypertrophy, reduces fibrosis, suppresses increases in oxidative stress, and maintains mitochondrial function. Therefore, targeting mitochondrial FAO is a promising therapeutic strategy for the treatment of diastolic dysfunction.


Angiotensin II/administration & dosage , Fatty Acids/metabolism , Myocardium/metabolism , Oxidation-Reduction/drug effects , Ventricular Dysfunction/metabolism , Acetyl-CoA Carboxylase/deficiency , Animals , Cardiomegaly/diagnosis , Cardiomegaly/genetics , Cardiomegaly/metabolism , Cardiomegaly/physiopathology , Diastole/drug effects , Disease Models, Animal , Echocardiography , Energy Metabolism/genetics , Fibrosis , Gene Deletion , Magnetic Resonance Imaging , Male , Mice , Mice, Knockout , Myocardium/pathology , Myocardium/ultrastructure , Organelle Biogenesis , Oxidative Stress/genetics , Ventricular Dysfunction/drug therapy , Ventricular Dysfunction/genetics
11.
Hum Genet ; 135(8): 909-917, 2016 08.
Article En | MEDLINE | ID: mdl-27234373

Idiopathic dilated cardiomyopathy (DCM) is a heritable, genetically heterogeneous disorder with variable age-dependent penetrance. We sought to identify the genetic underpinnings of syndromic, sporadic DCM in a newborn female diagnosed in utero. Postnatal evaluation revealed ventricular dilation and systolic dysfunction, bilateral cataracts, and mild facial dysmorphisms. Comprehensive metabolic and genetic testing, including chromosomal microarray, mitochondrial DNA and targeted RASopathy gene sequencing, and clinical whole exome sequencing for known cardiomyopathy genes was non-diagnostic. Following exclusion of asymptomatic DCM in the parents, trio-based whole exome sequencing was carried out on a research basis, filtering for rare, predicted deleterious de novo and recessive variants. An unreported de novo S75Y mutation was discovered in RRAGC, encoding Ras-related GTP binding C, an essential GTPase in nutrient-activated mechanistic target of rapamycin complex 1 (mTORC1) signaling. In silico protein modeling and molecular dynamics simulation predicted the mutation to disrupt ligand interactions and increase the GDP-bound state. Overexpression of RagC(S75Y) rendered AD293 cells partially insensitive to amino acid deprivation, resulting in increased mTORC1 signaling compared to wild-type RagC. These findings implicate mTORC1 dysregulation through a gain-of-function mutation in RagC as a novel molecular basis for syndromic forms of pediatric heart failure, and expand genotype-phenotype correlation in RASopathy-related syndromes.


Cardiomyopathy, Dilated/genetics , Genetic Heterogeneity , Monomeric GTP-Binding Proteins/genetics , Multiprotein Complexes/genetics , TOR Serine-Threonine Kinases/genetics , Age Factors , Cardiomyopathy, Dilated/physiopathology , Exome/genetics , Female , Gene Expression Regulation , Genetic Association Studies , Genetic Linkage , Genotype , Humans , Infant , Infant, Newborn , Male , Mechanistic Target of Rapamycin Complex 1 , Monomeric GTP-Binding Proteins/biosynthesis , Mutation, Missense , Pedigree
12.
Circ Res ; 114(6): 966-75, 2014 Mar 14.
Article En | MEDLINE | ID: mdl-24503893

RATIONALE: AMP-activated protein kinase is a master regulator of cell metabolism and an attractive drug target for cancer and metabolic and cardiovascular diseases. Point mutations in the regulatory γ2-subunit of AMP-activated protein kinase (encoded by Prkag2 gene) caused a unique form of human cardiomyopathy characterized by cardiac hypertrophy, ventricular preexcitation, and glycogen storage. Understanding the disease mechanisms of Prkag2 cardiomyopathy is not only beneficial for the patients but also critical to the use of AMP-activated protein kinase as a drug target. OBJECTIVE: We sought to identify the pro-growth-signaling pathway(s) triggered by Prkag2 mutation and to distinguish it from the secondary response to glycogen storage. METHODS AND RESULTS: In a mouse model of N488I mutation of the Prkag2 gene (R2M), we rescued the glycogen storage phenotype by genetic inhibition of glucose-6-phosphate-stimulated glycogen synthase activity. Ablation of glycogen storage eliminated the ventricular preexcitation but did not affect the excessive cardiac growth in R2M mice. The progrowth effect in R2M hearts was mediated via increased insulin sensitivity and hyperactivity of Akt, resulting in activation of mammalian target of rapamycin and inactivation of forkhead box O transcription factor-signaling pathways. Consequently, cardiac myocyte proliferation during the postnatal period was enhanced in R2M hearts followed by hypertrophic growth in adult hearts. Inhibition of mammalian target of rapamycin activity by rapamycin or restoration of forkhead box O transcription factor activity by overexpressing forkhead box O transcription factor 1 rescued the abnormal cardiac growth. CONCLUSIONS: Our study reveals a novel mechanism for Prkag2 cardiomyopathy, independent of glycogen storage. The role of γ2-AMP-activated protein kinase in cell growth also has broad implications in cardiac development, growth, and regeneration.


AMP-Activated Protein Kinases/physiology , Cardiomyopathy, Hypertrophic, Familial/genetics , Glycogen Storage Disease/genetics , Glycogen/biosynthesis , Myocardium/metabolism , Myocytes, Cardiac/pathology , AMP-Activated Protein Kinases/genetics , Animals , Cardiomyopathy, Hypertrophic, Familial/enzymology , Cardiomyopathy, Hypertrophic, Familial/metabolism , Cardiomyopathy, Hypertrophic, Familial/physiopathology , Cell Division , Cell Enlargement , Disease Models, Animal , Forkhead Box Protein O1 , Forkhead Transcription Factors/biosynthesis , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/physiology , Gene Knock-In Techniques , Genetic Complementation Test , Glucose-6-Phosphate/metabolism , Glucose-6-Phosphate/pharmacology , Glycogen Storage Disease/metabolism , Glycogen Storage Disease/physiopathology , Glycogen Synthase/genetics , Glycogen Synthase/physiology , Insulin Resistance/genetics , Mice , Myocytes, Cardiac/metabolism , Pre-Excitation Syndromes/genetics , Proto-Oncogene Proteins c-akt/physiology , Signal Transduction/genetics , Signal Transduction/physiology , Sirolimus/pharmacology , TOR Serine-Threonine Kinases/physiology
14.
J Mol Cell Cardiol ; 52(5): 1066-73, 2012 May.
Article En | MEDLINE | ID: mdl-22314372

AMP-activated protein kinase (AMPK) is a master metabolic switch that plays an important role in energy homeostasis at the cellular and whole body level, hence a promising drug target. AMPK is a heterotrimeric complex composed of catalytic α-subunit and regulatory ß- and γ-subunits with multiple isoforms for each subunit. It has been shown that AMPK activity is increased in cardiac hypertrophy and failure but it is unknown whether changes in subunit composition of AMPK contribute to the altered AMPK activity. In this study, we determined the protein expression pattern of AMPK subunit isoforms during cardiac development as well as during cardiac hypertrophy and heart failure in mouse heart. We also compared the findings in failing mouse heart to that of the human failing hearts in order to determine whether the mouse heart is a good model of AMPK in human diseases. In mouse developmental hearts, AMPK was highly expressed in the fetal stages and fell back to the adult level after birth. In the failing mouse heart, there was a significant increase in α2, ß2, and γ2 subunits both at the mRNA and protein levels. In contrary, we found significant increases in the protein level of α1, ß1 and γ2c subunits in human failing hearts with no change in the mRNA level. We also compared isoform-specific AMPK activity in the mouse and human failing hearts. Consistent with the literature, in the failing mouse heart, the α2 complexes accounted for ~2/3 of total AMPK activity while the α1 complexes accounted for the remaining 30-35%. In the human hearts, however, the contribution of α1-AMPK activity was significantly higher (>40%) in the non-failing hearts, and it further increased to 50% in the failing hearts. Thus, the human hearts have a greater amount of α1-AMPK activity compared to the rodent hearts. In summary, the protein level and the isoform distribution of AMPK in the heart change significantly during normal development as well as in heart failure. These observations provide a basis for future development of therapeutic strategies for targeting AMPK.


Adenylate Kinase/metabolism , Gene Expression , Heart Failure/enzymology , Adenylate Kinase/genetics , Adult , Aged , Animals , Cardiomyopathy, Dilated/enzymology , Case-Control Studies , Female , Gene Expression Regulation, Developmental , Humans , Isoenzymes/genetics , Isoenzymes/metabolism , Male , Mice , Middle Aged , Myocardial Ischemia/enzymology , Myocardium/enzymology , Young Adult
15.
J Mol Cell Cardiol ; 51(2): 144-55, 2011 Aug.
Article En | MEDLINE | ID: mdl-21549710

We have previously reported that resistin induces hypertrophy and impairs contractility in isolated rat cardiomyocytes. To examine the long-term cardiovascular effects of resistin, we induced in vivo overexpression of resistin using adeno-associated virus serotype 9 injected by tail vein in rats and compared to control animals. Ten weeks after viral injection, overexpression of resistin was associated with increased ratio of left ventricular (LV) weight/body weight, increased end-systolic LV volume and significant decrease in LV contractility, measured by the end-systolic pressure volume relationship slope in LV pressure volume loops, compared to controls. At the molecular level, mRNA expression of ANF and ß-MHC, and protein levels of phospholamban were increased in the resistin group without a change in the level of SERCA2a protein expression. Increased fibrosis by histology, associated with increased mRNA levels of collagen, fibronectin and connective tissue growth factor were observed in the resistin-overexpressing hearts. Resistin overexpression was also associated with increased apoptosis in vivo, along with an apoptotic molecular phenotype in vivo and in vitro. Resistin-overexpressing LV tissue had higher levels of TNF-α receptor 1 and iNOS, and reduced levels of eNOS. Cardiomyocytes overexpressing resistin in vitro produced larger amounts of TNFα in the medium, had increased phosphorylation of IκBα and displayed increased intracellular reactive oxygen species (ROS) content with increased expression and activity of ROS-producing NADPH oxidases compared to controls. Long-term resistin overexpression is associated with a complex phenotype of oxidative stress, inflammation, fibrosis, apoptosis and myocardial remodeling and dysfunction in rats. This phenotype recapitulates key features of diabetic cardiomyopathy. This article is part of Special Issue Item Group entitled "Possible Editorial".


Gene Expression/genetics , Heart/physiopathology , Myocardium/metabolism , Resistin/genetics , Resistin/metabolism , Ventricular Remodeling/genetics , Animals , Apoptosis/genetics , Biomarkers/metabolism , Blood Glucose/genetics , Cells, Cultured , Fibrosis/genetics , Gene Expression Regulation , Heart Ventricles/metabolism , Heart Ventricles/pathology , Heart Ventricles/physiopathology , Hemodynamics/genetics , Hypertrophy, Left Ventricular/genetics , Hypertrophy, Left Ventricular/metabolism , Hypertrophy, Left Ventricular/pathology , Inflammation Mediators/metabolism , Male , Myocardium/enzymology , Myocardium/pathology , Myocytes, Cardiac/enzymology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Nitric Oxide Synthase/genetics , Nitric Oxide Synthase/metabolism , Oxidative Stress/genetics , Rats , Rats, Sprague-Dawley
16.
J Mol Cell Cardiol ; 51(4): 548-53, 2011 Oct.
Article En | MEDLINE | ID: mdl-21147121

AMP-activated protein kinase (AMPK) regulates cellular energy homeostasis and multiple biological processes in cell growth and survival, hence an attractive drug target. AMPK is a heterotrimeric protein consisting of α catalytic, ß and γ regulatory subunits; two isoforms of each subunit are present in the heart. Studies using both genetic and pharmacological approaches have demonstrated important roles of AMPK in protecting the heart during ischemia/reperfusion injury as well as in pathological hypertrophy and failure. There is also emerging evidence suggesting isoform-specific function of AMPK, e.g. mutations of the γ2 subunit cause human cardiomyopathy. Thus, strategies avoiding the undesirable effects of altering γ2-AMPK activity, such as isoform selective activation of AMPK may lead to cardioprotective therapies with greater efficacy and safety. This article is part of a special issue entitled "Key Signaling Molecules in Hypertrophy and Heart Failure."


Adenylate Kinase/physiology , Molecular Targeted Therapy , Adenylate Kinase/antagonists & inhibitors , Adenylate Kinase/genetics , Animals , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/enzymology , Enzyme Activators/therapeutic use , Gene Expression , Humans , Isoenzymes/genetics , Isoenzymes/physiology , Mutation , Myocardium/enzymology , Organ Specificity , Protein Subunits/genetics , Protein Subunits/physiology , Stress, Physiological
17.
PLoS One ; 4(7): e6474, 2009 Jul 31.
Article En | MEDLINE | ID: mdl-19649297

BACKGROUND/AIM: Diabetes-associated myocardial dysfunction results in altered gene expression in the heart. We aimed to investigate the changes in gene expression profiles accompanying diabetes-induced cardiomyopathy and its phenotypic rescue by restoration of SERCA2a expression. METHODS/RESULTS: Using the Otsuka Long-Evans Tokushima Fatty rat model of type 2 diabetes and the Agilent rat microarray chip, we analyzed gene expression by comparing differential transcriptional changes in age-matched control versus diabetic hearts and diabetic hearts that received gene transfer of SERCA2a. Microarray expression profiles of selected genes were verified with real-time qPCR and immunoblotting. Our analysis indicates that diabetic cardiomyopathy is associated with a downregulation of transcripts. Diabetic cardiomyopathic hearts have reduced levels of SERCA2a. SERCA2a gene transfer in these hearts reduced diabetes-associated hypertrophy, and differentially modulated the expression of 76 genes and reversed the transcriptional profile induced by diabetes. In isolated cardiomyocytes in vitro, SERCA2a overexpression significantly modified the expression of a number of transcripts known to be involved in insulin signaling, glucose metabolism and cardiac remodeling. CONCLUSION: This investigation provided insight into the pathophysiology of cardiac remodeling and the potential role of SERCA2a normalization in multiple pathways in diabetic cardiomyopathy.


Diabetes Mellitus, Type 2/genetics , Heart Diseases/genetics , Sarcoplasmic Reticulum Calcium-Transporting ATPases/genetics , Animals , Blotting, Western , Diabetes Mellitus, Type 2/complications , Gene Expression Profiling , Heart Diseases/complications , Oligonucleotide Array Sequence Analysis , Phenotype , Rats , Rats, Long-Evans , Reverse Transcriptase Polymerase Chain Reaction , Transcription, Genetic , Transfection
18.
J Mol Cell Cardiol ; 45(2): 270-80, 2008 Aug.
Article En | MEDLINE | ID: mdl-18597775

Cardiovascular sequelae including diabetic cardiomyopathy constitute the major cause of death in diabetic patients. Although several factors may contribute to the development of this cardiomyopathy, the underlying molecular/cellular mechanisms leading to cardiac dysfunction are still partially understood. Recently, a novel paradigm for the role of the adipocytokine resistin in diabetes has emerged. Resistin has been proposed to be a link between obesity, insulin resistance and diabetes. Using microarray analysis, we have recently found that cardiomyocytes isolated from type 2 diabetic hearts express high levels of resistin. However, the function of resistin with respect to cardiac function is unknown. In this study we show that resistin is not only expressed in the heart, but also promotes cardiac hypertrophy. Adenovirus-mediated overexpression of resistin in cultured neonatal rat ventricular myocytes (NRVM) significantly increased sarcomere organization and cell size, increased protein synthesis and increased the expression of atrial natriuretic factor and beta-myosin heavy chain. Overexpression of resistin in NRVM was also associated with activation of the mitogen-activated protein (MAP) kinases, ERK1/2 and p38, as well as increased Ser-636 phosphorylation of insulin receptor substrate-1 (IRS-1), indicating that IRS-1/MAPK pathway may be involved in the observed hypertrophic response. Overexpression of resistin in adult cultured cardiomyocytes significantly altered myocyte mechanics by depressing cell contractility as well as contraction and relaxation velocities. Intracellular Ca(2+) measurements showed slower Ca(2+) transients decay in resistin-transduced myocytes compared to controls, suggesting impaired cytoplasmic Ca(2+) clearing or alterations in myofilament activation. We conclude that resistin overexpression alters cardiac contractility, confers to primary cardiomyocytes all the features of the hypertrophic phenotype and promotes cardiac hypertrophy possibly via the IRS-1/MAPK pathway.


Cardiomegaly/metabolism , Myocardial Contraction/physiology , Myocardium/metabolism , Resistin/physiology , Animals , Animals, Newborn , Cardiomegaly/genetics , Cells, Cultured , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 2/metabolism , Mitogen-Activated Protein Kinases/metabolism , Myocytes, Cardiac/metabolism , Phenotype , Rats , Rats, Inbred OLETF , Rats, Long-Evans , Rats, Sprague-Dawley , Resistin/biosynthesis , Resistin/genetics
...