Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Behav Neurosci ; 138(3): 212-220, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38635178

RESUMEN

Associating a neutral conditioned stimulus (CS) with the absence of a biologically significant unconditioned stimulus (US) confers conditioned inhibitory properties upon the CS, referred to as conditioned inhibition. Conditioned inhibition and conditioned excitation, an association of a CS with the presence of the US, are fundamental components of associative learning. While the neural substrates of conditioned excitation are well established, those of conditioned inhibition remain poorly understood. Recent research has shed light on the lateral habenula (LHb) engagement in conditioned inhibition, along with the midbrain dopaminergic neurons. This article reviews behavioral tasks conducted to assess conditioned inhibition and how experimental LHb manipulations affect performance in these tasks. These results underscore the critical role of the LHb in conditioned inhibition. Intriguingly, stress increases LHb reactivity and impairs performances in tasks consisting of a component of conditioned inhibition in animals. Dysfunction of the LHb is observed in patients with depression. The ability of an organism to perform conditioned inhibition is closely linked to altered neuronal activity in the LHb, which has implications for mental disorders. (PsycInfo Database Record (c) 2024 APA, all rights reserved).


Asunto(s)
Condicionamiento Clásico , Depresión , Habénula , Habénula/fisiología , Animales , Depresión/fisiopatología , Condicionamiento Clásico/fisiología , Inhibición Psicológica , Humanos , Neuronas Dopaminérgicas/fisiología , Aprendizaje por Asociación/fisiología
2.
Sci Rep ; 13(1): 571, 2023 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-36631519

RESUMEN

Recently, biocompatible optical sources have been surfacing for new-rising biomedical applications, allowing them to be used for multi-purpose technologies such as biological sensing, optogenetic modulation, and phototherapy. Especially, vertical-cavity surface-emitting laser (VCSEL) is in the spotlight as a prospective candidate for optical sources owing to its low-driving current performance, low-cost, and package easiness in accordance with two-dimensional (2D) arrays structure. In this study, we successfully demonstrated the actualization of biocompatible thin-film 930 nm VCSELs transferred onto a Polydimethylsiloxane (PDMS) carrier. The PDMS feature with biocompatibility as well as biostability makes the thin-film VCSELs well-suited for biomedical applications. In order to integrate the conventional VCSEL onto the PDMS carrier, we utilized a double-transfer technique that transferred the thin-film VCSELs onto foreign substrates twice, enabling it to maintain the p-on-n polarity of the conventional VCSEL. Additionally, we employed a surface modification-assisted bonding (SMB) using an oxygen plasma in conjunction with silane treatment when bonding the PDMS carrier with the substrate-removed conventional VCSELs. The threshold current and maximum output power of the fabricated 930 nm thin-film VCSELs are 1.08 mA and 7.52 mW at an injection current of 13.9 mA, respectively.


Asunto(s)
Dimetilpolisiloxanos , Rayos Láser , Fototerapia
3.
Proc Natl Acad Sci U S A ; 119(51): e2203711119, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36512497

RESUMEN

The selenium-binding protein 1 (SELENBP1) has been reported to be up-regulated in the prefrontal cortex (PFC) of schizophrenia patients in postmortem reports. However, no causative link between SELENBP1 and schizophrenia has yet been established. Here, we provide evidence linking the upregulation of SELENBP1 in the PFC of mice with the negative symptoms of schizophrenia. We verified the levels of SELENBP1 transcripts in postmortem PFC brain tissues from patients with schizophrenia and matched healthy controls. We also generated transgenic mice expressing human SELENBP1 (hSELENBP1 Tg) and examined their neuropathological features, intrinsic firing properties of PFC 2/3-layer pyramidal neurons, and frontal cortex (FC) electroencephalographic (EEG) responses to auditory stimuli. Schizophrenia-like behaviors in hSELENBP1 Tg mice and mice expressing Selenbp1 in the FC were assessed. SELENBP1 transcript levels were higher in the brains of patients with schizophrenia than in those of matched healthy controls. The hSELENBP1 Tg mice displayed negative endophenotype behaviors, including heterotopias- and ectopias-like anatomical deformities in upper-layer cortical neurons and social withdrawal, deficits in nesting, and anhedonia-like behavior. Additionally, hSELENBP1 Tg mice exhibited reduced excitabilities of PFC 2/3-layer pyramidal neurons and abnormalities in EEG biomarkers observed in schizophrenia. Furthermore, mice overexpressing Selenbp1 in FC showed deficits in sociability. These results suggest that upregulation of SELENBP1 in the PFC causes asociality, a negative symptom of schizophrenia.


Asunto(s)
Esquizofrenia , Humanos , Animales , Ratones , Esquizofrenia/genética , Esquizofrenia/metabolismo , Corteza Prefrontal/metabolismo , Células Piramidales/metabolismo , Encéfalo/metabolismo , Ratones Transgénicos , Proteínas de Unión al Selenio/genética , Proteínas de Unión al Selenio/metabolismo
4.
Nat Nanotechnol ; 17(3): 292-300, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34949774

RESUMEN

Electrical impulse generation and its conduction within cells or cellular networks are the cornerstone of electrophysiology. However, the advancement of the field is limited by sensing accuracy and the scalability of current recording technologies. Here we describe a scalable platform that enables accurate recording of transmembrane potentials in electrogenic cells. The platform employs a three-dimensional high-performance field-effect transistor array for minimally invasive cellular interfacing that produces faithful recordings, as validated by the gold standard patch clamp. Leveraging the high spatial and temporal resolutions of the field-effect transistors, we measured the intracellular signal conduction velocity of a cardiomyocyte to be 0.182 m s-1, which is about five times the intercellular velocity. We also demonstrate intracellular recordings in cardiac muscle tissue constructs and reveal the signal conduction paths. This platform could provide new capabilities in probing the electrical behaviours of single cells and cellular networks, which carries broad implications for understanding cellular physiology, pathology and cell-cell interactions.


Asunto(s)
Fenómenos Electrofisiológicos , Miocitos Cardíacos , Potenciales de Acción , Comunicación Celular
5.
Sci Adv ; 4(3): eaar3979, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29740603

RESUMEN

Ultrasonic imaging has been implemented as a powerful tool for noninvasive subsurface inspections of both structural and biological media. Current ultrasound probes are rigid and bulky and cannot readily image through nonplanar three-dimensional (3D) surfaces. However, imaging through these complicated surfaces is vital because stress concentrations at geometrical discontinuities render these surfaces highly prone to defects. This study reports a stretchable ultrasound probe that can conform to and detect nonplanar complex surfaces. The probe consists of a 10 × 10 array of piezoelectric transducers that exploit an "island-bridge" layout with multilayer electrodes, encapsulated by thin and compliant silicone elastomers. The stretchable probe shows excellent electromechanical coupling, minimal cross-talk, and more than 50% stretchability. Its performance is demonstrated by reconstructing defects in 3D space with high spatial resolution through flat, concave, and convex surfaces. The results hold great implications for applications of ultrasound that require imaging through complex surfaces.


Asunto(s)
Imagenología Tridimensional/instrumentación , Transductores , Ultrasonografía/instrumentación , Diseño de Equipo , Propiedades de Superficie
6.
Adv Mater ; 30(20): e1705992, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29611280

RESUMEN

Organic-inorganic hybrid perovskites have demonstrated tremendous potential for the next-generation electronic and optoelectronic devices due to their remarkable carrier dynamics. Current studies are focusing on polycrystals, since controlled growth of device compatible single crystals is extremely challenging. Here, the first chemical epitaxial growth of single crystal CH3 NH3 PbBr3 with controlled locations, morphologies, and orientations, using combined strategies of advanced microfabrication, homoepitaxy, and low temperature solution method is reported. The growth is found to follow a layer-by-layer model. A light emitting diode array, with each CH3 NH3 PbBr3 crystal as a single pixel, with enhanced quantum efficiencies than its polycrystalline counterparts is demonstrated.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...