Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 23
1.
Chemosphere ; 352: 141269, 2024 Mar.
Article En | MEDLINE | ID: mdl-38307334

In the recent years, researchers from all over the world have become interested in the fabrication of advanced and innovative electrochemical and/or biosensors for respiratory virus detection with the use of nanotechnology. These fabricated sensors demonstrated a number of benefits, including precision, affordability, accessibility, and miniaturization which makes them a promising test method for point-of-care (PoC) screening for SARS-CoV-2 viral infection. In order to comprehend the principles of electrochemical sensing and the role of various types of sensing interfaces, we comprehensively explored the underlying principles of electroanalytical methods and terminologies related to it in this review. In addition, it is addressed how to fabricate electrochemical sensing devices incorporating nanomaterials as graphene, metal/metal oxides, metal organic frameworks (MOFs), MXenes, quantum dots, and polymers. We took an effort to carefully compile current developments, advantages, drawbacks, possible solutions in nanomaterials based electrochemical sensors.


Biosensing Techniques , COVID-19 , Nanostructures , Humans , SARS-CoV-2 , COVID-19/diagnosis , Point-of-Care Systems , Rapid Diagnostic Tests , Oxides , Electrochemical Techniques , COVID-19 Testing
2.
Chemosphere ; 350: 141086, 2024 Feb.
Article En | MEDLINE | ID: mdl-38163464

The rising demand from consumer goods and pharmaceutical industry is driving a fast expansion of newly developed chemicals. The conventional toxicity testing of unknown chemicals is expensive, time-consuming, and raises ethical concerns. The quantitative structure-property relationship (QSPR) is an efficient computational method because it saves time, resources, and animal experimentation. Advances in machine learning have improved chemical analysis in QSPR studies, but the real-world application of machine learning-based QSPR studies was limited by the unexplainable 'black box' feature of the machine learnings. In this study, multi-encoder structure-to-toxicity (S2T)-transformer based QSPR model was developed to estimate the properties of polychlorinated biphenyls (PCBs) and endocrine disrupting chemicals (EDCs). Simplified molecular input line entry systems (SMILES) and molecular descriptors calculated by the Dragon 6 software, were simultaneously considered as input of QSPR model. Furthermore, an attention-based framework is proposed to describe the relationship between the molecular structure and toxicity of hazardous chemicals. The S2T-transformer model achieved the highest R2 scores of 0.918, 0.856, and 0.907 for logarithm of octanol-water partition coefficient (Log KOW), octanol-air partition coefficient (Log KOA), and bioconcentration factor (Log BCF) estimation of PCBs, respectively. Moreover, the attention weights were able to properly interpret the lateral (meta, para) chlorination associated with PCBs toxicity and environmental impact.


Polychlorinated Biphenyls , Animals , Polychlorinated Biphenyls/analysis , Octanols/chemistry , Water/chemistry , Software , Quantitative Structure-Activity Relationship , Environment
3.
Polymers (Basel) ; 16(2)2024 Jan 08.
Article En | MEDLINE | ID: mdl-38256987

Transparent and flexible vibrotactile actuators play an essential role in human-machine interaction applications by providing mechanical stimulations that can effectively convey haptic sensations. In the present study, we fabricated an electroactive, flexible, and transparent vibrotactile actuator with a dielectric layer including a dielectric elastomer and dielectric fluid mixture. The dielectric fluid mixture of propylene carbonate (PC) and acetyl tributyl citrate (ATBC) was injected to obtain a transparent dielectric layer. To further improve the haptic performance, different weight ratios of dielectric fluid (PC: ATBC) were injected. The fabricated vibrotactile actuators based on a transparent dielectric layer were investigated for their electrical and electromechanical behavior. The proposed actuators generate a large vibrational intensity (~2.5 g) in the range of 200-250 Hz. Hence, the proposed actuators open up a new class of vibrotactile actuators for possible use in various domains, including robotics, smart textiles, teleoperation, and the metaverse.

4.
Int J Biol Macromol ; 253(Pt 5): 127154, 2023 Dec 31.
Article En | MEDLINE | ID: mdl-37793524

The rising demand for green and clean energy urges the enlargement of economical and proficient electrode materials for supercapacitors. Herein, we designed a novel electrode material by porous cellulose graphitic carbon (CC) derived from bio-waste cornhusk via the pyrolysis route, and α-Fe2O3 decorated nanostructure with CC (CCIO) was achieved in situ pyrolysis of corn-husk and Fe(NO3)3·9H2O metal salt followed by a coating of polypyrrole (CCIOP). The CC, CCIO, and CCIOP nanocomposite electrodes were characterized by XRD, Raman, FTIR, FE-SEM/EDX, FE-TEM, XPS, and BET analysis. The CCIOP nanocomposite electrode exhibits an enhanced specific capacitance (Csp) of 290.9 F/g, which is substantial to its pristine CC (128.3 F/g), PPy (140.3 F/g), and CCIO (190.7 F/g). The Csp of CCIOP in a three-electrode system, using 1 M Na2SO4 electrolyte exhibits excellent capacity retention of 79.1 % even at a high current density of 10 A/g. The as-fabricated asymmetric supercapacitor (ASC) delivered a remarkable capacity retention of 88.7 % with a coulombic efficiency of 98.8 % even after 3000 cycles. The study shows successful utilization of cellulose from bio-waste cornhusk into a substantial template applicable in future alternative energy storage devices.


Graphite , Nanocomposites , Polymers , Cellulose , Carbon , Pyrroles , Electrodes
5.
Ecotoxicol Environ Saf ; 253: 114694, 2023 Mar 15.
Article En | MEDLINE | ID: mdl-36857924

Till to date, the application of sulfur-doped graphitic carbon nitride supported transition metal carbide interface for electrochemical sensor fabrication was less explored. In this work, we designed a simple synthesis of molybdenum carbide sphere embedded sulfur doped graphitic carbon nitride (Mo2C/SCN) catalyst for the nanomolar electrochemical sensor application. The synthesized Mo2C/SCN nanocatalyst was systematically characterized using X-ray diffraction (XRD) and scanning electron microscopy (SEM) with elemental mapping. The SEM images show that the porous SCN network adhered uniformly on Mo2C, causing a loss of crystallinity in the diffractogram. The corresponding elemental mapping of Mo2C/SCN shows distinct peaks for carbon (41.47%), nitrogen (32.54%), sulfur (1.37%), and molybdenum (24.62%) with no additional impurity peaks, reflecting the successful synthesis. Later, the glassy carbon electrode (GCE) was modified by Mo2C/SCN nanocatalyst for simultaneous sensing of uric acid (UA) and folic acid (FA). The fabricated Mo2C/SCN/GCE is capable of simultaneous and interference free electrochemical detection of UA and FA in a binary mixture. The limit of detection (LOD) calculated at Mo2C/SCN/GCE for UA and FA was 21.5 nM (0.09 - 47.0 µM) and 14.7 nM (0.09 - 167.25 µM) respectively by differential pulse voltammetric (DPV) technique. The presence of interferons has no significant effect on the sensor's performance, making it suitable for real sample analysis. The present method can be extended to fabricate an electrochemical sensor for various molecules.


Folic Acid , Uric Acid , Uric Acid/analysis , Electrochemical Techniques/methods , Carbon/chemistry , Electrodes , Limit of Detection , Sulfur
6.
Chemosphere ; 307(Pt 1): 135645, 2022 Nov.
Article En | MEDLINE | ID: mdl-35817176

Respiratory viruses are a serious threat to human wellbeing that can cause pandemic disease. As a result, it is critical to identify virus in a timely, sensitive, and precise manner. The present novel coronavirus-2019 (COVID-19) disease outbreak has increased these concerns. The research of developing various methods for COVID-19 virus identification is one of the most rapidly growing research areas. This review article compares and addresses recent improvements in conventional and advanced electroanalytical approaches for detecting COVID-19 virus. The popular conventional methods such as polymerase chain reaction (PCR), loop mediated isothermal amplification (LAMP), serology test, and computed tomography (CT) scan with artificial intelligence require specialized equipment, hours of processing, and specially trained staff. Many researchers, on the other hand, focused on the invention and expansion of electrochemical and/or bio sensors to detect SARS-CoV-2, demonstrating that they could show a significant role in COVID-19 disease control. We attempted to meticulously summarize recent advancements, compare conventional and electroanalytical approaches, and ultimately discuss future prospective in the field. We hope that this review will be helpful to researchers who are interested in this interdisciplinary field and desire to develop more innovative virus detection methods.


COVID-19 , SARS-CoV-2 , Artificial Intelligence , COVID-19/diagnosis , Humans , Nucleic Acid Amplification Techniques/methods , Pandemics , Sensitivity and Specificity
7.
Front Plant Sci ; 13: 843575, 2022.
Article En | MEDLINE | ID: mdl-35463432

The CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated protein 9) method is a versatile technique that can be applied in crop refinement. Currently, the main reasons for declining agricultural yield are global warming, low rainfall, biotic and abiotic stresses, in addition to soil fertility issues caused by the use of harmful chemicals as fertilizers/additives. The declining yields can lead to inadequate supply of nutritional food as per global demand. Grains and horticultural crops including fruits, vegetables, and ornamental plants are crucial in sustaining human life. Genomic editing using CRISPR/Cas9 and nanotechnology has numerous advantages in crop development. Improving crop production using transgenic-free CRISPR/Cas9 technology and produced fertilizers, pesticides, and boosters for plants by adopting nanotechnology-based protocols can essentially overcome the universal food scarcity. This review briefly gives an overview on the potential applications of CRISPR/Cas9 and nanotechnology-based methods in developing the cultivation of major agricultural crops. In addition, the limitations and major challenges of genome editing in grains, vegetables, and fruits have been discussed in detail by emphasizing its applications in crop refinement strategy.

8.
Article En | MEDLINE | ID: mdl-35409720

BACKGROUND: This study examined the effect of digital devices, exercise, and music intervention programs for the elderly in Korea on their cognition and depression. METHODS: This study selected 70 cognition programs and 46 depression programs for the elderly in Korea. This study controlled the characteristics of the programs and participants, and conducted a meta-regression analysis to estimate the intervention effect size of digital devices, exercise, and music on cognition and depression. RESULTS: The meta-regression analysis revealed that digital device programs had a smaller effect size with respect to the improvement of cognitive functions than programs that did not use digital devices. The exercise programs had a small effect size on depression, but their effect size on cognition was not significantly different. DISCUSSION: These findings provide implications for developing a program that combines music therapy with digital devices and exercise interventions, which can be effective in addressing both cognition and depression.


Dementia , Music Therapy , Music , Aged , Cognition , Dementia/therapy , Humans , Regression Analysis
9.
Sci Rep ; 12(1): 2149, 2022 02 09.
Article En | MEDLINE | ID: mdl-35140315

It is well known that, surfactants provide a neutral, positive and/or negative charge on the electrode surface by forming a monolayer, which in turn affects the charge transfer and redox potential during the electroanalysis process. However, the molecular level understanding of these surfactant-modified electrodes is worth investigating because the interaction of the analyte with the electrode surface is still unclear. In this report, we used quantum chemical models based on computational density functional theory (DFT) to investigate the polysorbate 80 structure as well as the locations of energy levels and electron transfer sites. Later, the bare carbon paste electrode (bare/CPE) was modified with polysorbate 80 and used to resolve the overlapped oxidation signals of dihydroxy benzene isomers. The m/n values obtained at polysorbate/CPE was approximately equal to 1, signifying the transfer of same number of protons and electrons. Moreover, the analytical applicability of the modified electrode for the determination of catechol (CC) and hydroquinone (HQ) in tap water samples gave an acceptable recovery result. Overall, the application of DFT to understand the molecular level interaction of modifiers for sensing applications laid a new foundation for fabricating electrochemical sensors.

10.
ACS Appl Mater Interfaces ; 13(8): 10397-10408, 2021 Mar 03.
Article En | MEDLINE | ID: mdl-33591712

Existing soft actuators for adaptive microlenses suffer from high required input voltage, optical loss, liquid loss, and the need for assistant systems. In this study, we fabricate a polyvinyl chloride-based gel using a new synergistic plasticization method to achieve simultaneously a high optical transparency and an ultrasoft rubber-like elastic behavior with a large voltage-induced deformation under a weak electric field. By compressing the smooth gel between two sets of annular electrodes, a self-contained biconvex microlens is realized that is capable of considerable shape changes in the optical path. Each surface of the dual-curvature microlens can be independently adjusted to focus or scatter light to capture real or virtual images, yield variable focal lengths (+31.8 to -11.3 mm), and deform to various shapes to improve aberrations. In addition to simple fabrication, our microlens operates silently and consumes low power (0.52 mW), making it superior to existing microlenses.

11.
IEEE Trans Haptics ; 14(1): 83-94, 2021.
Article En | MEDLINE | ID: mdl-32804656

In this article, present RealWalk, a pair of haptic shoes for HMD-based VR, designed to create realistic sensations of ground surface deformation, and texture using Magnetorheological fluid (MR fluid). RealWalk offers a novel interaction scheme through the physical interaction between the shoes, and the ground surfaces while walking in VR. Each shoe consists of two MR fluid actuators, an insole pressure sensor, and a foot position tracker. The MR fluid actuators are designed in the form of multi-stacked disc structure with a long flow path to maximize the flow resistance. With changing the magnetic field intensity in MR fluid actuators based on the ground material in the virtual scene, the viscosity of MR fluid is changed accordingly. When a user steps on the ground with the shoes, the two MR fluid actuators are pressed down, creating a variety of ground material deformation such as snow, mud, and dry sand. We built an interactive VR application, and compared RealWalk with vibrotactile-based haptic shoes in four different VR scenes: grass, sand, mud, and snow. We report that, compared to vibrotactile-haptic shoes, RealWalk provides higher ratings in all scenes for discrimination, realism, and satisfaction. We also report qualitative user feedback for their experiences.


Shoes , Virtual Reality , Foot , Humans , User-Computer Interface , Walking
12.
ACS Appl Mater Interfaces ; 12(39): 44147-44155, 2020 Sep 30.
Article En | MEDLINE | ID: mdl-32870646

Developing a simple and universal solution for gripping fragile, multiscaled, and arbitrary-shaped objects using a robot gripper is challenging. Herein, we propose a universal, shape-adaptive/-retaining and reversible, hardness-variable gripper skin that serves as a resourceful solution for grasping such objects without damaging them. The proposed universal gripper skin based on a magnetorheological elastomer is attached to a robot gripper. The proposed skin takes the shape of a target object as soon as the gripper grasps the object. At this time, we solidify the gripper skin by applying a magnetic field, thereby allowing the gripper to grasp the target object easily. After releasing the objects, the magnetic field is removed and the deformed proposed gripper skin rapidly restores its original shape. The proposed adaptive gripper skin is made to grasp various target objects, such as cylinders, cuboids, and triangular prisms, based on which its grasping performance is evaluated.


Elastomers/chemistry , Hand Strength , Robotics , Skin/chemistry , Equipment Design , Humans , Magnetic Fields , Particle Size , Surface Properties
13.
Materials (Basel) ; 13(7)2020 Mar 25.
Article En | MEDLINE | ID: mdl-32218243

Two xerogels made of 4-pyridyl cholesterol (PC) and silver-nanocomposites (SNCs) thereof have been studied for their efficient reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) in the presence of aqueous sodium borohydride. Since in-situ silver doping will be effective in ethanol and acetone solvents with a PC gelator, two silver-loaded PC xerogels were prepared and successive SNCs were achieved by using an environmentally benign trisodium citrate dehydrate reducing agent. The formed PC xerogels and their SNCs were comprehensively investigated using different physico-chemical techniques, such as field emission scanning electron microscopy (FE-SEM), Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), powdered X-ray diffraction (XRD) and UV-Visible spectroscopy (UV-Vis). The FE-SEM results confirm that the shape of xerogel-covered silver nanoparticles (SNPs) are roughly spherical, with an average size in the range of 30-80 nm. Thermal degradation studies were analyzed via the sensitive graphical Broido's method using a TGA technique. Both SNC-PC (SNC-PC-X1 and SNC-PC-X2) xerogels showed remarkable catalytic performances, with recyclable conversion efficiency of around 82% after the fourth consecutive run. The apparent rate constant (kapp) of SNC-PC-X1 and SNC-PC-X2 were found to be 6.120 × 10-3 sec-1 and 3.758 × 10-3 sec-1, respectively, at an ambient temperature.

14.
Adv Sci (Weinh) ; 7(1): 1902521, 2020 Jan.
Article En | MEDLINE | ID: mdl-31921572

In this study, a pairing of a previously unidentified 3D printing technique and soft materials is introduced in order to achieve not only high-resolution printed features and flexibility of the 3D-printed materials, but also its light-weight and electrical conductivity. Using the developed technique and materials, high-precision and highly sensitive patient-specific wearable active or passive devices are fabricated for personalized health monitoring. The fabricated biosensors show low density and substantial flexibility because of 3D microcellular network-type interconnected conductive materials that are readily printed using an inkjet head. Using high-resolution 3D scanned body-shape data, on-demand personalized wearable sensors made of the 3D-printed soft and conductive materials are fabricated. These sensors successfully detect both actively changing body strain signals and passively changing signals such as electromyography (EMG), electrodermal activity (EDA), and electroencephalogram EEG. The accurately tailored subject-specific shape of the developed sensors exhibits higher sensitivity and faster real-time sensing performances in the monitoring of rapidly changing human body signals. The newly developed 3D printing technique and materials can be widely applied to various types of wearable, flexible, and light-weight biosensors for use in a variety of inexpensive on-demand and personalized point-of-care diagnostics.

15.
Sensors (Basel) ; 19(16)2019 Aug 09.
Article En | MEDLINE | ID: mdl-31404971

The most important thing in a thin and soft haptic module with an electroactive polymer actuator array is to increase its vibrotactile amplitude and to create a variety of vibrotactile sensations. In this paper, we introduce a thin film-type electroactive polymer actuator array capable of stimulating two types of human mechanoreceptors simultaneously, and we present a haptic rendering method that maximizes the actuators' vibrational force without improving the array's haptic performance. The increase in vibrational amplitude of the soft electroactive polymer actuator array is achieved by creating a beat vibration, which is an interference pattern of two vibrations with slightly different frequencies. The textures of a target object are translated into haptic stimuli using the proposed method. We conducted qualitative and quantitative experiments to evaluate the performance of the proposed rendering method. The results showed that this method not only amplifies the vibration's amplitude but also haptically simulates various objects' surfaces.

16.
IEEE Trans Haptics ; 11(1): 22-29, 2018.
Article En | MEDLINE | ID: mdl-29611810

In this paper, we propose a soft vibrotactile actuator made by mixing silicon dioxide nanoparticles and plasticized PVC gel. The effect of the silicon dioxide nanoparticles in the plasticized PVC gel for the haptic performance is investigated in terms of electric, dielectric, and mechanical properties. Furthermore, eight soft vibrotactile actuators are prepared as a function of the content. Experiments are conducted to examine the haptic performance of the prepared eight soft vibrotactile actuators and to find the best weight ratio of the plasticized PVC gel to the nanoparticles. The experiments should show that the plasticized PVC gel with silicon dioxide nanoparticles improves the haptic performance of the plasticized PVC gel-based vibrotactile actuator, and the proposed vibrotactile actuator can create a variety of haptic sensations in a wide frequency range.


Man-Machine Systems , Nanotechnology , Touch , User-Computer Interface , Wearable Electronic Devices , Biomechanical Phenomena , Equipment Design , Humans , Nanoparticles/chemistry , Physical Stimulation , Plasticizers/chemistry , Polyvinyl Chloride/chemistry , Silicon Dioxide , Vibration
17.
Food Chem ; 240: 594-600, 2018 Feb 01.
Article En | MEDLINE | ID: mdl-28946317

Puffing of coffee beans, which induces heat- and pressure-derived physicochemical changes, was applied as an alternative to roasting. Roasted or puffed coffee beans with equivalent lightness values were compared. The moisture content was higher while the crude fat and protein compositions were lower in puffed beans than in roasted beans. The pH was lower and the acid content was higher in puffed beans than in roasted beans. The roasted beans exhibited greater specific volumes, while the puffed beans displayed greater extraction yields. The trigonelline and total phenolic contents were greater in puffed beans than in roasted beans resulting in an enhanced antioxidant capacity. Sensory evaluation of roasted and puffed coffee bean brews revealed that puffing did not affect the flavor or overall acceptance. The current study provides evidence that puffing is an alternative to roasting coffee beans with various benefits.


Coffee , Antioxidants , Hot Temperature , Phenols , Plant Extracts
18.
ACS Appl Mater Interfaces ; 9(51): 44678-44686, 2017 Dec 27.
Article En | MEDLINE | ID: mdl-29205030

We reported the development of a transparent stretchable crack-enhanced microfluidic capacitive sensor array for use in E-skin applications. The microfluidic sensor was fabricated through a simple lamination process involving two silver nanowire (AgNW)-embedded rubbery microfluidic channels arranged in a crisscross fashion. The sensing performance was optimized by testing a variety of sensing liquids injected into the channels. External mechanical stimuli applied to the sensor induced the liquid to penetrate the deformed microcracks on the rubber channel surface. The increased interfacial contact area between the liquid and the nanowire electrodes increased the capacitance of the sensor. The device sensitivity was strongly related to both the initial fluid interface between the liquid and crack wall and the change in the contact length of the liquid and crack wall, which were simulated using the finite element method. The microfluidic sensor was shown to detect a wide range of pressures, 0.1-140 kPa. Ordinary human motions, including substantial as well as slight muscle movements, could be successively detected, and 2D color mappings of simultaneous external load sensing were collected. Our simple method of fabricating the microfluidic channels and the application of these channels to stretchable e-skin sensors offers an excellent sensing platform that is highly compatible with emerging medical and electronic applications.


Microfluidics , Electric Capacitance , Electrodes , Equipment Design , Humans , Nanowires , Skin
19.
Opt Express ; 25(17): 20133-20141, 2017 Aug 21.
Article En | MEDLINE | ID: mdl-29041697

We propose a focus-tunable double-convex (DCX) lens based on a non-ionic PVC (nPVC) gel to be used at close conjugates. The proposed lens is composed of an nPVC gel and two plates with electrodes. Each plate has a hole whose boundary and inner part are pasted with an electrode (anode) and has another ring shaped electrode (cathode) whose center point is the same as the hole's center. The gel is sandwiched between an upper plate and a lower plate, and it is bulged inward between the holes of two plates by applied pressure from the plates (double-convex lens shape). The lens's focal length changed from 3 mm to 24.5 mm with applied voltages from 0 V to 400 V. We also observed that the proposed lens's field-of-view decreased from 121.9 ° to 41.9 ° according to the applied voltages. The proposed lens brings additional benefit for users with higher transmittance (over 94%).

20.
Sci Rep ; 7(1): 2068, 2017 05 18.
Article En | MEDLINE | ID: mdl-28522844

This paper presents a bio-inspired adaptive micro-lens with electrically tunable focus made of non-ionic high-molecular-weight polyvinyl chloride (PVC) gel. The optical device mimics the design of the crystalline lens and ciliary muscle of the human eye. It consists of a plano-convex PVC gel micro-lens on Indium Tin Oxide (ITO) glass, confined with an annular electrode operating as an artificial ciliary muscle. Upon electrical activation, the electroactive adhesive force of the PVC gel is exerted on the annular anode electrode, which reduces the sagittal height of the plano-convex PVC gel lens, resulting in focal length variation of the micro-lens. The focal length increases from 3.8 mm to 22.3 mm as the applied field is varied from 200 V/mm to 800 V/mm, comparable to that of the human lens. The device combines excellent optical characteristics with structural simplicity, fast response speed, silent operation, and low power consumption. The results show the PVC gel micro-lens is expected to open up new perspectives on practical tunable optics.

...