Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 494
1.
Phys Act Nutr ; 28(1): 1-6, 2024 Mar.
Article En | MEDLINE | ID: mdl-38719460

PURPOSE: This study investigated the effects of exogenous lactate intake on energy metabolism during 1 h of rest after acute exercise. METHODS: Eight-week-old ICR mice were randomly divided into four groups: SED (no treatment), EXE (exercise only), LAC (post-exercise oral lactate administration), and SAL (post-exercise saline administration) (n=8 per group). The exercise intensity was at VO2max 80% at 25 m/min and 15° slope for 50 min. After acute exercise, the LAC and SAL groups ingested lactate and saline orally, respectively, and were allowed to rest in a chamber. Energy metabolism was measured for 1 h during the resting period. RESULTS: LAC and SAL group mice ingested lactate and saline, respectively, after exercise and the blood lactate concentration was measured 1 h later through tail blood sampling. Blood lactate concentration was not significantly different between the two groups. Energy metabolism measurements under stable conditions revealed that the respiratory exchange ratio in the LAC group was significantly lower than that in the SAL group. Additionally, carbohydrate oxidation in the LAC group was significantly lower than that in the SAL group at 10-25 min. No significant difference was observed in the fat oxidation level between the two groups. CONCLUSION: We found that post-exercise lactate intake modified the respiratory exchange ratio after 1 h of rest. In addition, acute lactate ingestion inhibits carbohydrate oxidation during the post-exercise recovery period.

2.
Phys Act Nutr ; 28(1): 31-36, 2024 Mar.
Article En | MEDLINE | ID: mdl-38719464

PURPOSE: Public transportation (PT) systems significantly shape urban mobility and have garnered attention owing to their potential impact on public health, particularly the promotion of physical activity. Beyond their transportation functions, PT systems also affect daily energy expenditure through non-exercise activity thermogenesis (NEAT). This mini-review surveys the existing literature to explore the effects of PT use on NEAT levels and subsequent health outcomes. METHODS: A comprehensive literature search was conducted using the electronic databases PubMed, Google Scholar, and Web of Science. Keywords including "public transportation," "non-exercise activity thermogenesis," "physical activity," "health promotion," and related terms were used to identify relevant studies. RESULTS: This review highlights the multifaceted relationship between PT use and health promotion, emphasizing the potential benefits and challenges of increasing NEAT through public transit utilization. Overall, the findings suggest that PT use contributes positively to NEAT levels, and thus improves health outcomes. However, the extent of this impact may vary depending on individual and contextual factors. CONCLUSION: Interventions promoting active transportation modes, including public transit, hold promise for addressing sedentary behavior and fostering healthier lifestyles at the population level.

3.
Article En | MEDLINE | ID: mdl-38777330

OBJECTIVE: This study aimed to examine maternal and neonatal factors in cesarean deliveries due to dystocia, including cephalopelvic disproportion, latent-phase prolongation, and fetal malposition or malpresentation. Additionally, we sought to compare the differences between the dystocia subgroups. METHOD AND MATERIALS: This retrospective case-control study included women who delivered between January 2010 and June 2021 after 37 weeks of pregnancy and underwent abdominal-pelvic CT scans within 5 years before and after delivery. Neonatal factors were extracted from medical charts immediately after delivery. RESULTS: Among the 292 women studied, those with cesarean deliveries for dystocia were older (mean ± SD, 34.2 ± 4.27 vs. 32.2 ± 3.8, p-value = 0.002), had higher pre-pregnancy BMI (22.7 ± 3.67 vs. 21.4 ± 3.48, p-value = 0.012) and term-BMI (27.4 ± 3.72 vs. 25.9 ± 3.66, p-value = 0.010), shorter interspinous distance (ISD, the distance between ischial spine) (10.8 ± 0.76 vs. 11.2 ± 0.85 cm, p-value = 0.003), and longer head circumference (HC) (35 ± 1.47 vs. 34.4 ± 1.36 cm, p-value = 0.003) compared to those who had vaginal deliveries. Univariate logistic regression for dystocia revealed associations between HC/maternal height and HC/ISD ratios (OR, 2.02 [95% confidence interval, CI, 1.4 ~ 2.92], 12.13 [3.2 ~ 46.04], respectively). Multivariate logistic analysis indicated that maternal age, ISD, and HC were significant factors for dystocia (OR, 1.11 [95% CI, 1.01 ~ 1.21], 0.49 [0.26 ~ 0.91], 1.53 [1.07 ~ 2.19], respectively). The subgroup with latent-phase prolongation exhibited the lowest birthweight/term-BMI ratio (124 ± 18.8 vs. 113 ± 10.3 vs. 134 ± 19.1, p-value = 0.013). CONCLUSION: The HC/ISD ratio emerged as a crucial predictor of dystocia, suggesting that reducing term-BMI could potentially mitigate latent-phase prolongation. Further research assessing the maternal mid-pelvis during pregnancy and labor is warranted, along with efforts to reduce BMI during pregnancy.

4.
Int J Mol Sci ; 25(10)2024 May 19.
Article En | MEDLINE | ID: mdl-38791574

Being a component of the Ras/Raf/MEK/ERK signaling pathway crucial for cellular responses, the VRAF murine sarcoma viral oncogene homologue B1 (BRAF) kinase has emerged as a promising target for anticancer drug discovery due to oncogenic mutations that lead to pathway hyperactivation. Despite the discovery of several small-molecule BRAF kinase inhibitors targeting oncogenic mutants, their clinical utility has been limited by challenges such as off-target effects and suboptimal pharmacological properties. This study focuses on identifying miniprotein inhibitors for the oncogenic V600E mutant BRAF, leveraging their potential as versatile drug candidates. Using a structure-based de novo design approach based on binding affinity to V600E mutant BRAF and hydration energy, 39 candidate miniprotein inhibitors comprising three helices and 69 amino acids were generated from the substructure of the endogenous ligand protein (14-3-3). Through in vitro binding and kinase inhibition assays, two miniproteins (63 and 76) were discovered as novel inhibitors of V600E mutant BRAF with low-micromolar activity, with miniprotein 76 demonstrating a specific impediment to MEK1 phosphorylation in mammalian cells. These findings highlight miniprotein 76 as a potential lead compound for developing new cancer therapeutics, and the structural features contributing to its biochemical potency against V600E mutant BRAF are discussed in detail.


Protein Kinase Inhibitors , Proto-Oncogene Proteins B-raf , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , Humans , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Mutation , Drug Discovery/methods , Phosphorylation/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Drug Design , Protein Binding , Structure-Activity Relationship , Models, Molecular
5.
Mitochondrial DNA B Resour ; 9(4): 500-505, 2024.
Article En | MEDLINE | ID: mdl-38623177

The mitogenome of Euphausia crystallorophias collected from the Ross Sea Region Marine Protected Area (RSR MPA) is described for the first time. The assembled mitogenome was 17,291 bp in length and consisted of two ribosomal RNAs (rRNAs), 22 transfer RNAs (tRNAs), 13 protein-coding genes (PCGs), and noncoding regions, all of which were identical to those of other euphausiid species. The most common start codon for the 13 PCGs was ATG, and the most common termination codon was TAA. The overall G + C content was 33.2% in the heavy strand. Euphausia crystallorophias was sister to E. superba in the phylogenetic analysis. The mitogenome of E. crystallorophias provided significant DNA molecular data for further identification and phylogenetic analysis within the euphausiids.

6.
J Med Chem ; 67(9): 7647-7662, 2024 May 09.
Article En | MEDLINE | ID: mdl-38684226

The elevated activity of leucine-rich repeat kinase 2 (LRRK2) is implicated in the pathogenesis of Parkinson's disease (PD). The quest for effective LRRK2 inhibitors has been impeded by the formidable challenge of crossing the blood-brain barrier (BBB). We leveraged structure-based de novo design and developed robust three-dimensional quantitative structure-activity relationship (3D-QSAR) models to predict BBB permeability, enhancing the likelihood of the inhibitor's brain accessibility. Our strategy involved the synthesis of macrocyclic molecules by linking the two terminal nitrogen atoms of HG-10-102-01 with an alkyl chain ranging from 2 to 4 units, laying the groundwork for innovative LRRK2 inhibitor designs. Through meticulous computational and synthetic optimization of both biochemical efficacy and BBB permeability, 9 out of 14 synthesized candidates demonstrated potent low-nanomolar inhibition and significant BBB penetration. Further assessments of in vitro and in vivo effectiveness, coupled with pharmacological profiling, highlighted 8 as the promising new lead compound for PD therapeutics.


Blood-Brain Barrier , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2 , Parkinson Disease , Protein Kinase Inhibitors , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/antagonists & inhibitors , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Blood-Brain Barrier/metabolism , Parkinson Disease/drug therapy , Parkinson Disease/metabolism , Animals , Humans , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/therapeutic use , Mice , Quantitative Structure-Activity Relationship , Permeability , Macrocyclic Compounds/chemistry , Macrocyclic Compounds/pharmacology , Macrocyclic Compounds/chemical synthesis , Macrocyclic Compounds/pharmacokinetics , Male
8.
Animals (Basel) ; 14(8)2024 Apr 11.
Article En | MEDLINE | ID: mdl-38672310

This study aims to reveal the substitution impact of fish meal (FM) with the combined meat meal and chicken by-product meal (CMC) in the olive flounder (P. olivaceus) feeds on growth and feed availability. Seven experimental feeds were formulated. The control (CMC0) diet included 65% FM. In the CMC0 diet, the various (10%, 20%, 40%, 60%, 80%, and 100%) levels of FM were replaced with CMC, named as the CMC10, CMC20, CMC40, CMC60, CMC80, and CMC100 diets, respectively. The total number of 525 juvenile fish (9.2 ± 0.01 g; mean ± SD) was placed into 21 50-L flow-through tanks (25 juveniles/tank) with three replicates. Fish were hand-fed to apparent satiation for 8 weeks. After the 8-week feeding experiment, olive flounder fed the CMC10 (40.0 ± 0.60 g/fish, 2.99 ± 0.021%/day, and 39.57 ± 0.542 g/fish; mean ± SD), CMC20 (47.3 ± 2.58 g/fish, 3.24 ± 0.082%/day, and 45.16 ± 0.760 g/fish), and CMC40 (40.2 ± 1.17 g/fish, 3.00 ± 0.040%/day, and 39.43 ± 0.930 g/fish) diets attained superior (p < 0.0001 for all) weight gain, specific growth rate (SGR), and feed consumption compared to olive flounder fed the CMC0 (35.1 ± 0.96 g/fish, 2.81 ± 0.039%/day, and 33.75 ± 0.544 g/fish), CMC60 (31.7 ± 1.62 g/fish, 2.66 ± 0.068%/day, and 31.60 ± 1.080 g/fish), CMC80 (24.7 ± 0.63 g/fish, 2.33 ± 0.033%/day, and 25.27 ± 0.689 g/fish), and CMC100 (17.8 ± 0.32 g/fish, 1.92 ± 0.021%/day, and 18.99 ± 0.592 g/fish, respectively) diets. Weight gain, SGR, and feed consumption of olive flounder fed the CMC60 diet were comparable to olive flounder fed the CMC0 diet. Feed efficiency and protein efficiency ratio of olive flounder fed the CMC60 diet (1.02 ± 0.007 and 1.79 ± 0.034) were comparable to fish fed the CMC0 diet (1.04 ± 0.012 and 1.85 ± 0.021, respectively). None of the plasma and serum measurements, proximate composition, amino acid profiles, or survival of olive flounder after S. iniae infection were influenced by dietary treatments. In conclusion, CMC can substitute FM up to 60% (39% FM protein in the diet) without deteriorating growth performance, feed availability, or the survival of fish after S. iniae infection.

9.
Metabolites ; 14(4)2024 Apr 13.
Article En | MEDLINE | ID: mdl-38668348

We compared the effects of chronic exogenous lactate and exercise training, which influence energy substrate utilization and body composition improvements at rest and during exercise, and investigated the availability of lactate as a metabolic regulator. The mice were divided into four groups: CON (sedentary + saline), LAC (sedentary + lactate), EXE (exercise + saline), and EXLA (exercise + lactate). The total experimental period was set at 4 weeks, the training intensity was set at 60-70% VO2max, and each exercise group was administered a solution immediately after exercise. Changes in the energy substrate utilization at rest and during exercise, the protein levels related to energy substrate utilization in skeletal muscles, and the body composition were measured. Lactate intake and exercise increased carbohydrate oxidation as a substrate during exercise, leading to an increased energy expenditure and increased protein levels of citrate synthase and malate dehydrogenase 2, key factors in the TCA(tricarboxylic acid) cycle of skeletal muscle. Exercise, but not lactate intake, induced the upregulation of the skeletal muscle glucose transport factor 4 and a reduction in body fat. Hence, chronic lactate administration, as a metabolic regulator, influenced energy substrate utilization by the skeletal muscle and increased energy expenditure during exercise through the activation of carbohydrate metabolism-related factors. Therefore, exogenous lactate holds potential as a metabolic regulator.

10.
Phys Med Biol ; 69(11)2024 May 29.
Article En | MEDLINE | ID: mdl-38663411

Objective. Deep-learning networks for super-resolution (SR) reconstruction enhance the spatial-resolution of 3D magnetic resonance imaging (MRI) for MR-guided radiotherapy (MRgRT). However, variations between MRI scanners and patients impact the quality of SR for real-time 3D low-resolution (LR) cine MRI. In this study, we present a personalized super-resolution (psSR) network that incorporates transfer-learning to overcome the challenges in inter-scanner SR of 3D cine MRI.Approach: Development of the proposed psSR network comprises two-stages: (1) a cohort-specific SR (csSR) network using clinical patient datasets, and (2) a psSR network using transfer-learning to target datasets. The csSR network was developed by training on breath-hold and respiratory-gated high-resolution (HR) 3D MRIs and their k-space down-sampled LR MRIs from 53 thoracoabdominal patients scanned at 1.5 T. The psSR network was developed through transfer-learning to retrain the csSR network using a single breath-hold HR MRI and a corresponding 3D cine MRI from 5 healthy volunteers scanned at 0.55 T. Image quality was evaluated using the peak-signal-noise-ratio (PSNR) and the structure-similarity-index-measure (SSIM). The clinical feasibility was assessed by liver contouring on the psSR MRI using an auto-segmentation network and quantified using the dice-similarity-coefficient (DSC).Results. Mean PSNR and SSIM values of psSR MRIs were increased by 57.2% (13.8-21.7) and 94.7% (0.38-0.74) compared to cine MRIs, with the reference 0.55 T breath-hold HR MRI. In the contour evaluation, DSC was increased by 15% (0.79-0.91). Average time consumed for transfer-learning was 90 s, psSR was 4.51 ms per volume, and auto-segmentation was 210 ms, respectively.Significance. The proposed psSR reconstruction substantially increased image and segmentation quality of cine MRI in an average of 215 ms across the scanners and patients with less than 2 min of prerequisite transfer-learning. This approach would be effective in overcoming cohort- and scanner-dependency of deep-learning for MRgRT.


Imaging, Three-Dimensional , Magnetic Resonance Imaging, Cine , Humans , Magnetic Resonance Imaging, Cine/methods , Imaging, Three-Dimensional/methods , Radiotherapy, Image-Guided/methods , Deep Learning
11.
Nat Commun ; 15(1): 3312, 2024 Apr 17.
Article En | MEDLINE | ID: mdl-38632336

Moiré superlattices of transition metal dichalcogenides offer a unique platform to explore correlated exciton physics with optical spectroscopy. Whereas the spatially modulated potentials evoke that the exciton resonances are distinct depending on a site in a moiré supercell, there have been no clear demonstration how the moiré excitons trapped in different sites dynamically interact with the doped carriers; so far the exciton-electron dynamic interactions were presumed to be site-dependent. Thus, the transient emergence of nonequilibrium correlations are open questions, but existing studies are limited to steady-state optical measurements. Here we report experimental fingerprints of site-dependent exciton correlations under continuous-wave as well as ultrashort optical excitations. In near-zero angle-aligned WSe2/WS2 heterobilayers, we observe intriguing polarization switching and strongly enhanced Pauli blocking near the Mott insulating state, dictating the dominant correlation-driven effects. When the twist angle is near 60°, no such correlations are observed, suggesting the strong dependence of atomic registry in moiré supercell configuration. Our studies open the door to largely unexplored nonequilibrium correlations of excitons in moiré superlattices.

12.
Article En | MEDLINE | ID: mdl-38598311

Glioblastoma is one of the most aggressive and invasive types of brain cancer with a 5-year survival rate of 6.8%. With limited options, patients often have poor quality of life and are moved to palliative care after diagnosis. As a result, there is an extreme need for a novel theranostic method that allows for early diagnosis and noninvasive treatment as current peptide-based delivery standards may have off-target effects. Prussian Blue nanoparticles (PBNPs) have recently been investigated as photoacoustic imaging (PAI) and photothermal ablation agents. However, due to their inability to cross the blood-brain barrier (BBB), their use in glioblastoma treatment is limited. By utilizing a hybrid, biomimetic nanoparticle composed of a PBNP interior and a U-87 cancer cell-derived exosome coating (Exo:PB), we show tumor-specific targeting within the brain and selective thermal therapy potential due to the strong photoconversion abilities. Particle characterization was carried out and showed a complete coating around the PBNPs that contains exosome markers. In vitro cellular uptake patterns are similar to native U-87 exosomes and when exposed to an 808 nm laser, show localized cell death within the specified region. After intravenous injection of Exo:PB into subcutaneously implanted glioblastoma mice, they have shown effective targeting and eradication of tumor volume compared to PEG-coated PBNPs (PEG:PB). Through systemic administration of Exo:PB particles into orthotopic glioblastoma-bearing mice, the PBNP signal was detected in the brain tumor region through PAI. It was seen that Exo:PB had preferential tumor accumulation with less off-targeting compared to the RGD:PB control. Ex vivo analysis validated specific targeting with a direct overlay of Exo:PB with the tumor by both H&E staining and Ki67 labeling. Overall, we have developed a novel biomimetic material that can naturally cross the BBB and act as a theranostic agent for systemic targeting of glioblastoma tissue and photothermal therapeutic effect.

13.
Int J Mol Sci ; 25(8)2024 Apr 19.
Article En | MEDLINE | ID: mdl-38674090

Cinnamic acid (CA) was successfully incorporated into Zn-Al layered double hydroxide (LDH) through coprecipitation. The CA moiety was stabilized in the interlayer space through not only electrostatic interaction but also intermolecular π-π interaction. It was noteworthy that the CA arrangement was fairly independent of the charge density of LDH, showing the important role of the layer-CA and CA-CA interactions in molecular stabilization. Computer simulations using the Monte Carlo method as well as analytical approaches including infrared, UV-vis spectroscopy, and differential scanning calorimetry showed the existence of intermolecular interaction. In order to reinforce molecular stabilization, a neutral derivative of CA, cinnamaldehyde (CAD), was additionally incorporated into LDH. It was clearly shown that CAD played a role as a π-π interaction mediator to enhance the stabilization of CA. The time-dependent release of CA from LDH was first governed by the layer charge density of LDH; however, the existence of CAD provided additional stabilization to the CA arrangement to slow down the release kinetics.


Acrolein/analogs & derivatives , Cinnamates , Delayed-Action Preparations , Hydroxides , Cinnamates/chemistry , Hydroxides/chemistry , Delayed-Action Preparations/chemistry , Acrolein/chemistry , Kinetics , Monte Carlo Method , Calorimetry, Differential Scanning
14.
ACS Appl Bio Mater ; 2024 Apr 04.
Article En | MEDLINE | ID: mdl-38574012

Colorectal cancer (CRC) is the third leading cause of cancer death in the U.S., and early detection and diagnosis are essential for effective treatment. Current methods are inadequate for rapid detection of early disease, revealing flat lesions, and delineating tumor margins with accuracy and molecular specificity. Fluorescence endoscopy can generate wide field-of-view images enabling detection of CRC lesions and margins; increased signal intensity and improved signal-to-noise ratios can increase both speed and sensitivity of cancer detection. For this purpose, we developed targeted near-infrared (NIR) fluorescent silica nanoparticles (FSNs). We tuned their size to 50-200 nm and conjugated their surface with an antibody to carcinoembryonic antigen (CEA) to prepare CEA-FSNs. The physicochemical properties and biodegradable profiles of CEA-FSN were characterized, and molecular targeting was verified in culture using HT29 (CEA positive) and HCT116 (CEA negative) cells. CEA-FSNs bound to the HT29 cells to a greater extent than to the HCT116 cells, and smaller CEA-FSNs were internalized into HT29 cells more efficiently than larger CEA-FSNs. After intravenous administration of CEA-FSNs, a significantly greater signal was observed from the CEA-positive HT29 than the CEA-negative HCT116 tumors in xenografted mice. In F344-PIRC rats, polyps in the intestine were detected by white-light endoscopy, and NIR fluorescent signals were found in the excised intestinal tissue after topical application of CEA-FSNs. Immunofluorescence imaging of excised tissue sections demonstrated that the particle signals coregistered with signals for both CRC and CEA. These results indicate that CEA-FSNs have potential as a molecular imaging marker for early diagnosis of CRC.

15.
Heliyon ; 10(5): e26367, 2024 Mar 15.
Article En | MEDLINE | ID: mdl-38434402

Aeration plays a crucial role in aquaculture to maintain adequate dissolved oxygen (DO) levels in water, which is essential for supporting aquatic life. However, traditional aeration systems such as paddlewheel aerators or diffused air aerators often come with high energy consumption, frequent maintenance, and greater operational costs. To address these challenges, this research paper presents the development and evaluation of a more sustainable and cost-effective aerator, named the perforated pooled circular stepped cascade aerator (PPCSC), for intensive aquaculture. Laboratory experiments were conducted in a masonry tank to assess the performance of the PPCSC aerator with different bottom radii (Rb) and discharges (Q). The results showed that the highest standard aeration efficiency (SAE) of 4.564 ± 0.6662 kg O2/kWh was achieved with a bottom radii (Rb) of 0.75 m and a discharge (Q) of 0.016 m3/s. A developed regression model was found to effectively evaluate the standard oxygen transfer rate (SOTR) and SAE for different Rb and Q values used in the PPCSC system. Both Rb and Q were found to significantly impact the SOTR and SAE of the PPCSC aerator. Overall, the PPCSC aerator is a promising option for small-scale tank-based intensive aquaculture due to its high performance and lower operational costs.

16.
Ultrasound Q ; 2024 Jan 08.
Article En | MEDLINE | ID: mdl-38470608

ABSTRACT: This study aimed to assess the detection rate of small (<10 mm) pancreas cyst and intrareader reliability for cyst size measurements on transabdominal ultrasonography (US). From 2020 to 2022, 194 pancreas cysts in 173 patients, incidentally detected on computed tomography or magnetic resonance imaging, were evaluated on US by 1 of 2 radiologists (readers 1 and 2). Intrareader agreements of cyst size measurements on US were assessed by intraclass correlation coefficient (ICC). Bland-Altman plot was used to visualize the differences between the first and second size measurements in each reader. In this study, readers 1 and 2 evaluated 86 cysts in 76 patients and 108 cysts in 97 patients, respectively. Most of the cysts (191 of 194) were located in the nontail portion of the pancreas. Overall detection rate of pancreas cysts by US was 92.3% (179 of 194). The mean size of measured 179 pancreas cysts was 4.7 ± 1.5 mm. The readers showed excellent intrareader agreements (ICC = 0.925 and 0.960) for cyst size measurements, except for the cysts with size ≤5 mm, where both readers showed good intrareader agreements (ICC = 0.848 and 0.873). The 95% limits of agreement of readers 1 and 2 were 13.8% and 14.9% of the mean, respectively. Therefore, transabdominal US could be a reliable follow-up imaging modality for small (<10 mm) nontail pancreas cysts incidentally detected on computed tomography or magnetic resonance imaging, especially for the cysts with size between 5 and 10 mm. Size changes of the pancreas cysts approximately less than 15% may be within the measurement error.

17.
ACS Appl Opt Mater ; 2(3): 445-452, 2024 Mar 22.
Article En | MEDLINE | ID: mdl-38544700

This study presents an approach for synthesizing Eu2+/Eu3+-coactivated Ca2SiO4 nanophosphors, by adjusting the ratio of both activators within a singular host material. Utilizing a hydrothermal method complemented by a postreduction sintering process, we fabricated a series of phosphors characterized by uniform 30-50 nm spherical nanoparticles. These engineered phosphors manifest multichannel luminescence properties and exhibit simultaneous blue and red emission from Eu2+ and Eu3+, respectively. Meticulous control of the 5% H2-95% N2 reduction temperature allowed for precise tuning of the Eu2+ and Eu3+ ions within the host lattice, which enabled the strategic adjustment of their luminescent outputs. Utilizing X-ray photoelectron spectroscopy (XPS), we could discern subtle alterations in the europium oxidation state. By using a transmission electron microscope (TEM) and an X-ray diffractometer (XRD), we found that the subsequent changes by reductive sintering to particle size, morphology, and mixed crystal structures influenced the materials' luminescent characteristics. Our findings herald a significant advancement in solid-state lighting, with the potential for the use of Eu2+/Eu3+-coactivated calcium silicate nanophosphors to develop white light emission technologies endowed with enhanced color rendering and luminous efficacy.

18.
Sci Rep ; 14(1): 7001, 2024 03 25.
Article En | MEDLINE | ID: mdl-38523153

Organic aquaculture is a new approach in the modern farming system. As the capital investment is higher for setting up the organic aquaculture, it is essential to conduct an economic feasibility study with compare the conventional farming system. In the current study, economic feasibility of culturing Indian major carps (IMC) using conventional culture system and organic culture system (OCS) were evaluated. IMC was cultured for three consecutive years from 2017 to 2019 in experimental ponds of 0.015 hectare (ha) area each. The crude protein content of the organic and conventional feed was maintained at the same iso-nitrogenous level (32% crude protein) but the highest production to the tune of 19 tons per ha was obtained in OCS. Further, in case of OCS, apart from fish production, vermicomposting to the tune of 45,000 kg ha-1 in the first year, and 90,000 kg ha-1 from second year onward is achievable by installing a vermicomposting unit of 200 tons annual capacity. Economic analysis of the culture systems assuming a project period of 10 years showed that the highest net present value (NPV) of 1.06 million USD, a payback period of one year and nine months and an internal rate of return (IRR) of 51% are achievable per ha of fish culture pond for OCS. Sensitivity analysis of various costs performed for OCS revealed that profitability of the organic fish farming investment is most sensitive to the total fish production and sale price of the organic fishes. In terms of production of fish and economics of organic culture system is proved to be the best available technique.


Carps , Animals , Feasibility Studies , Aquaculture/methods , Agriculture , Fisheries
19.
Phys Med Biol ; 69(6)2024 Mar 13.
Article En | MEDLINE | ID: mdl-38408387

Objective. Real-time MRgRT uses 2D-cine imaging for target tracking and motion evaluation. Rotation of gantry inducedB0off-resonance, resulting in image artifacts and imaging isocenter-shift precluding MR-guided arc therapy. Standard MRI phantoms designed for higher resolution images face challenges when low-resolution cine imaging is needed to achieve high frame rates. This work aimed to examine the spatial accuracy including geometric distortion and isocenter shift in real-time during gantry rotation on a 0.35 T MR-Linac using the concentric Cine imaging quality assurance (QA) phantom and its associated image analysis software.Approach. The Cine imaging QA phantom consists of two concentric shells of low-T1mineral oil and a central alignment structure. The phantom was scanned on three different MRI systems; 0.55 T Siemens Free.Max, 1.5 T Philips Ingenia, and 0.35 T ViewRay MRIdian MR-Linac using 2D balanced steady-state free precession (bSSFP) imaging sequence. In addition, bSSFP cine MRI with the banding artifact correction was tested on 0.35 T ViewRay MR-Linac. Images from the MR-Linac were acquired with the Linac gantry stationary and rotating from gantry 300°â†’ 0° and vice versa. Three orthogonal image planes were scanned excluding the 1.5 T Philips Ingenia, where only the axial plane was scanned. The image analysis software calculated the distortion values as well as the isocenter position for each cine frame.Main results. The geometric distortion of cine imaging on MRIs and MR-Linac at gantry stationary are within 1 mm while the substantial geometric distortion of 2 and 2.2 mm were observed on 0.35 T MR-Linac while rotating the gantry clockwise (300°â†’ 0°) and counterclockwise 0°â†’ 300° respectively. The average imaging isocenter shift was 0.1 mm for both MRIs and the static gantry and imaging isocenter shift of ≤1.5 mm was observed during the gantry rotation. The imaging isocenter shift decreased by 1 ± 0.2 mm clockwise and counterclockwise withB0compensation.Significance. The concentric Cine imaging QA phantom and its associated software effectively demonstrate the image distortion on real-time cine imaging on regular MRIs and 0.35 T MR-Linac. The results of significant geometric distortion with a rotating gantry in the MR-Linac system require further investigation to alleviate the extent of the image distortion.


Image Processing, Computer-Assisted , Particle Accelerators , Image Processing, Computer-Assisted/methods , Software , Phantoms, Imaging , Magnetic Resonance Imaging/methods
20.
Appl Microbiol Biotechnol ; 108(1): 224, 2024 Feb 20.
Article En | MEDLINE | ID: mdl-38376550

The occurrence of autophagy in recombinant Chinese hamster ovary (rCHO) cell culture has attracted attention due to its effects on therapeutic protein production. Given the significance of glycosylation in therapeutic proteins, this study examined the effects of autophagy-inhibiting chemicals on sialylation of Fc-fusion glycoproteins in rCHO cells. Three chemical autophagy inhibitors known to inhibit different stages were separately treated with two rCHO cell lines that produce the same Fc-fusion glycoprotein derived from DUKX-B11 and DG44. All autophagy inhibitors significantly decreased the sialylation of Fc-fusion glycoprotein in both cell lines. The decrease in sialylation of Fc-fusion glycoprotein is unlikely to be attributed to the release of intracellular enzymes, given the high cell viability and low activity of extracellular sialidases. Interestingly, the five intracellular nucleotide sugars remained abundant in cells treated with autophagy inhibitors. In the mRNA expression profiles of 27 N-glycosylation-related genes using the NanoString nCounter system, no significant differences in gene expression were noted. With the positive effect of supplementing nucleotide sugar precursors on sialylation, attempts were made to enhance the levels of intracellular nucleotide sugars by supplying these precursors. The addition of nucleotide sugar precursors to cultures treated with inhibitors successfully enhanced the sialylation of Fc-fusion glycoproteins compared to the control culture. This was particularly evident under mild stress conditions and not under relatively severe stress conditions, which were characterized by a high decrease in sialylation. These results suggest that inhibiting autophagy in rCHO cell culture decreases sialylation of Fc-fusion glycoprotein by constraining the availability of intracellular nucleotide sugars. KEY POINTS: •  The autophagy inhibition in rCHO cell culture leads to a significant reduction in the sialylation of Fc-fusion glycoprotein. •  The pool of five intracellular nucleotide sugars remained highly abundant in cells treated with autophagy inhibitors. •  Supplementation of nucleotide sugar precursors effectively restores decreased sialylation, particularly under mild stress conditions but not in relatively severe stress conditions.


Autophagy , Glycoproteins , Animals , Cricetinae , CHO Cells , Cricetulus , Glycoproteins/genetics , Nucleotides , Sugars
...