Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Bone Miner Res ; 37(7): 1400-1410, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35598324

RESUMEN

Bisphosphonate-related osteonecrosis of the jaw (BRONJ) is a detrimental intraoral lesion that occurs in patients with long-term or high-dose use of anti-resorptive agents such as bisphosphonates. Tooth extraction is a known risk factor for BRONJ, and such intervention is often performed to eliminate existing pathological inflammatory conditions. Previously, we determined that ligature-induced periodontitis (LIP) is a risk factor for the development of osteonecrosis in mice, but it remains unclear whether the chronicity of LIP followed by extraction influences osteonecrosis development. In this study, we assess the effect of short-term and long-term LIP (ligature placed for 3 weeks [S-LIP] or 10 weeks [L-LIP], respectively) on osteonecrosis development in mice receiving 250 µg/kg/week zoledronic acid (ZOL). When compared to S-LIP, L-LIP caused 70% (p ≤ 0.0014) more bone loss without altering microbe composition. In the presence of ZOL, bone loss mediated by LIP was prevented and bone necrosis was induced. When the ligated tooth was extracted, histologic hallmarks of osteonecrosis including empty lacunae and necrotic bone were increased by 88% (p = 0.0374) and 114% (p = 0.0457), respectively, in L-LIP compared to S-LIP. We also observed significant increases in serum platelet factor 4 (PF4) and macrophage inflammatory factor 1 γ (MIP1γ) in mice that received ZOL treatment and had tooth extractions compared to controls, which may be systemic markers of inflammation-associated osteonecrosis development. Additionally, CD3+ T cells were identified as the major immune population in both health and disease, and we observed a 116% (p = 0.0402) increase in CD3+IL23R+ T cells in L-LIP compared to S-LIP lesions following extraction. Taken together, our study reveals that extracting a periodontally compromised tooth increases the formation of necrotic bone compared to extracting a periodontally healthy tooth and that osteonecrosis may be associated with the duration of the preexisting pathological inflammatory conditions. © 2022 American Society for Bone and Mineral Research (ASBMR).


Asunto(s)
Osteonecrosis de los Maxilares Asociada a Difosfonatos , Conservadores de la Densidad Ósea , Osteonecrosis , Periodontitis , Animales , Osteonecrosis de los Maxilares Asociada a Difosfonatos/tratamiento farmacológico , Conservadores de la Densidad Ósea/uso terapéutico , Difosfonatos/efectos adversos , Ratones , Osteonecrosis/inducido químicamente , Osteonecrosis/complicaciones , Periodontitis/complicaciones , Extracción Dental/efectos adversos , Ácido Zoledrónico/efectos adversos
2.
Int J Oral Sci ; 14(1): 16, 2022 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-35307731

RESUMEN

Bacterial infection is a common finding in patients, who develop medication-related osteonecrosis of the jaw (MRONJ) by the long-term and/or high-dose use of anti-resorptive agents such as bisphosphonate (BPs). However, pathological role of bacteria in MRONJ development at the early stage remains controversial. Here, we demonstrated that commensal microbiota protects against MRONJ development in the pulp-exposed periapical periodontitis mouse model. C57/BL6 female mice were treated with intragastric broad-spectrum antibiotics for 1 week. Zoledronic acid (ZOL) through intravenous injection and antibiotics in drinking water were administered for throughout the experiment. Pulp was exposed on the left maxillary first molar, then the mice were left for 5 weeks after which bilateral maxillary first molar was extracted and mice were left for additional 3 weeks to heal. All mice were harvested, and cecum, maxilla, and femurs were collected. ONJ development was assessed using µCT and histologic analyses. When antibiotic was treated in mice, these mice had no weight changes, but developed significantly enlarged ceca compared to the control group (CTL mice). Periapical bone resorption prior to the tooth extraction was similarly prevented when treated with antibiotics, which was confirmed by decreased osteoclasts and inflammation. ZOL treatment with pulp exposure significantly increased bone necrosis as determined by empty lacunae and necrotic bone amount. Furthermore, antibiotics treatment could further exacerbate bone necrosis, with increased osteoclast number. Our findings suggest that the commensal microbiome may play protective role, rather than pathological role, in the early stages of MRONJ development.


Asunto(s)
Osteonecrosis de los Maxilares Asociada a Difosfonatos , Conservadores de la Densidad Ósea , Microbiota , Enfermedades Periapicales , Animales , Osteonecrosis de los Maxilares Asociada a Difosfonatos/patología , Osteonecrosis de los Maxilares Asociada a Difosfonatos/prevención & control , Difosfonatos , Femenino , Humanos , Ratones , Ácido Zoledrónico
3.
Sci Rep ; 10(1): 6383, 2020 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-32286430

RESUMEN

Periodontitis is a local and systemic inflammatory condition and a risk factor of atherosclerosis, but no studies investigated the effect of a statin on atherogenesis affected by severe periodontitis. In this study, we investigated the effect of rosuvastatin (RSV) on atherogenesis in Apolipoprotein E-deficient mice receiving silk ligature placement around the maxillary second molars. Mice with the ligature placement developed severe periodontitis and vascular inflammation. RSV significantly inhibited the development of periodontitis and vascular inflammation and remarkably blocked the increased lipid deposition and the atherogenic gene expression in the arterial wall and aortic sinus induced by severe periodontitis. To understand the mechanistic effect of RSV on periodontitis-associated atherogenesis, we investigated the in vitro effect of RSV on various effect of TNF-α, a major proinflammatory cytokine for periodontitis and atherogenesis. We found that RSV notably inhibited the TNF-α-induced osteoclast formation, endothelial cell phenotypic changes, foam cell formation, and the expression of CD47 and other oncogenes in arterial smooth muscle cells. Taken together, our study indicates that RSV prevents the exacerbation of atherosclerosis induced periodontitis by inhibiting local, systemic and vascular inflammation, as well as the expression of CD47 from arterial smooth muscle cells in mice.


Asunto(s)
Aterosclerosis/tratamiento farmacológico , Inflamación/tratamiento farmacológico , Periodontitis/complicaciones , Rosuvastatina Cálcica/uso terapéutico , Animales , Aterosclerosis/etiología , Línea Celular , Citocinas/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Masculino , Ratones , Ratones Noqueados para ApoE , Osteoclastos/efectos de los fármacos , Osteoclastos/patología , Seno Aórtico/efectos de los fármacos
4.
J Bone Miner Res ; 34(9): 1753-1766, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31074883

RESUMEN

Autophagy (ATG), an important cellular recycling process whereby macromolecules or organelles are encapsulated by autophagosome and degraded upon merging with lysosome, has recently been shown to play an essential role in bone biology. However, the involvement of ATG in bone and bone-related cells remains unclear. Here, we show that Beclin1, an ATG-related protein involved in ATG initiation, plays a pivotal role in osteoclasts. ATG was activated during osteoclast differentiation in vitro. Beclin1 was enhanced and required for osteoclast differentiation. Mechanistically, we found that TRAF6-mediated ubiquitination of Beclin1 at K117, but not ULK1-mediated phosphorylation, is required for RANKL-stimulated osteoclast differentiation. In vivo, mice lacking Beclin1 in CstK-expressing cells exhibited an increased cortical bone thickness caused by impaired osteoclasts' function. Interestingly, these mice also exhibited diminished trabecular bone mass, which was associated with a defect in cartilage formation and chondrocyte differentiation. Collectively, our study highlights the functional importance of ATG in osteoclasts and chondrocytes, and identifies ATG as a potential therapeutic target for managing bone-related diseases. © 2019 American Society for Bone and Mineral Research.


Asunto(s)
Beclina-1/metabolismo , Huesos/fisiología , Diferenciación Celular , Condrocitos/citología , Homeostasis , Osteoclastos/citología , Animales , Autofagia/efectos de los fármacos , Resorción Ósea/patología , Diferenciación Celular/efectos de los fármacos , Condrocitos/efectos de los fármacos , Condrocitos/metabolismo , Hueso Cortical/efectos de los fármacos , Femenino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Tamaño de los Órganos/efectos de los fármacos , Osteoclastos/efectos de los fármacos , Osteoclastos/metabolismo , Ligando RANK/farmacología , Células RAW 264.7 , Factor 6 Asociado a Receptor de TNF/metabolismo , Ubiquitinación/efectos de los fármacos
5.
Am J Pathol ; 188(10): 2318-2327, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30059656

RESUMEN

Medication-related osteonecrosis of the jaw (MRONJ) is a rare but detrimental intraoral lesion that predominantly occurs in patients with long-term use of antiresorptive agents, such as bisphosphonate and denosumab, a human anti-receptor activator of NF-κB ligand (RANKL) monoclonal antibody (Ab). Surgical intervention, such as tooth extraction, is a known risk factor for MRONJ, which is often performed to eliminate preexiting pathologic inflammatory conditions, such as periodontal diseases. Nonetheless, it remains unknown whether pre-existing periodontal disease condition exacerbates, or removal of such condition ameliorates, MRONJ development after tooth extraction. In this study, we combined the ligature-induced periodontitis and the tooth extraction mouse models under the administration of zoledronic acid (ZOL) or anti-RANKL Ab, and provide experimental evidence that a pre-existing pathologic inflammatory condition exacerbates MRONJ development after tooth extraction in mice. Under ZOL administration, tooth extraction alone induced ONJ lesions; however, extraction of a ligature-placed tooth further exacerbated ONJ development. When the ligature was removed and the inflammatory condition was deescalated, ONJ development was ameliorated. Anti-RANKL Ab administration resulted in similar outcomes. Interestingly, unlike ZOL-administered mice, anti-RANKL Ab-administered mice exhibited complete absence of osteoclasts, suggesting that physical presence of osteoclasts is not directly involved in ONJ development. Collectively, our study demonstrated that periodontal disease is a functionally linked risk factor that predisposes ONJ development after tooth extraction in the presence of bisphosphonate and denosumab.


Asunto(s)
Enfermedades Maxilomandibulares/prevención & control , Osteonecrosis/prevención & control , Periodontitis/terapia , Extracción Dental , Animales , Osteonecrosis de los Maxilares Asociada a Difosfonatos/prevención & control , Conservadores de la Densidad Ósea/toxicidad , Denosumab/toxicidad , Modelos Animales de Enfermedad , Femenino , Enfermedades Maxilomandibulares/inducido químicamente , Ligadura , Ratones Endogámicos C57BL , Osteonecrosis/inducido químicamente
6.
Chin J Dent Res ; 21(2): 113-118, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29808174

RESUMEN

OBJECTIVE: To identify and verify the histone modifier during osteoclastogenesis. METHODS: Murine macrophage-like cell line, RAW 264.7 cells, or murine bone marrow macrophages (BMMs) were treated with a receptor activator of nuclear factor B ligand (RANKL) alone or RANKL with macrophage colony-stimulating factor (M-CSF), respectively, to induce differentiation of osteoclast. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to screen different arrays of histone demethylases. Chromatin immunoprecipitation (ChIP) assay was used to examine occupancy of jumonji domain containing 7 (Jmjd7) in the promoter regions of different osteoclast-related genes. Jmjd7 was knocked down using siRNA. Dentine slice assay was used to evaluate bone-resorptive functions. RESULTS: Among the screened histone demethylases, Jmjd7 was significantly downregulated during differentiation of osteoclast. The occupancy of Jmjd7 at the promoter regions of osteoclast-related genes was also decreased. Knockdown of Jmjd7 in RAW 264.7 cells and BMMs enhanced differentiation of osteoclast and increased the expression of osteoclast-related genes, such as c-fos, Dc-stamp, CtsK, Acp5, and Nfatc1. Bone resorptive functions of the cells were also increased. CONCLUSION: Our study shows that Jmjd7, a histone demethylase, functions as a negative regulator of osteoclastogenesis, and may be a therapeutic target of bone-related diseases.


Asunto(s)
Diferenciación Celular , Histona Demetilasas con Dominio de Jumonji/fisiología , Osteoclastos/citología , Osteoclastos/enzimología , Animales , Células Cultivadas , Macrófagos/citología , Macrófagos/enzimología , Ratones
7.
J Vis Exp ; (119)2017 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-28117776

RESUMEN

Dental pulp is a vital organ of a tooth fully protected by enamel and dentin. When the pulp is exposed due to cariogenic or iatrogenic injuries, it is often capped with biocompatible materials in order to expedite pulpal wound healing. The ultimate goal is to regenerate reparative dentin, a physical barrier that functions as a "biological seal" and protects the underlying pulp tissue. Although this direct pulp-capping procedure has long been used in dentistry, the underlying molecular mechanism of pulpal wound healing and reparative dentin formation is still poorly understood. To induce reparative dentin, pulp capping has been performed experimentally in large animals, but less so in mice, presumably due to their small sizes and the ensuing technical difficulties. Here, we present a detailed, step-by-step method of performing a pulp-capping procedure in mice, including the preparation of a Class-I-like cavity, the placement of pulp-capping materials, and the restoration procedure using dental composite. Our pulp-capping mouse model will be instrumental in investigating the fundamental molecular mechanisms of pulpal wound healing in the context of reparative dentin in vivo by enabling the use of transgenic or knockout mice that are widely available in the research community.


Asunto(s)
Recubrimiento de la Pulpa Dental/métodos , Exposición de la Pulpa Dental/fisiopatología , Dentina Secundaria/fisiología , Cicatrización de Heridas , Animales , Ratones
8.
J Bone Miner Res ; 32(2): 309-318, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27567012

RESUMEN

Long-term administration of nitrogen-containing bisphosphonates can induce detrimental side effects such as bisphosphonate-related osteonecrosis of the jaw (BRONJ) in human. Although inflammation is known to be associated with BRONJ development, the detailed underlying mechanism remains unknown. Here, we report that the pro-inflammatory cytokine IL-36α is, in part, responsible for the BRONJ development. We found a notably higher level of IL-36α and lower level of collagen in the BRONJ lesions in mice. We also found that IL-36α remarkably suppressed TGF-ß-mediated expression of Collα1 and α-Sma via the activation of Erk signaling pathway in mouse gingival mesenchymal stem cells. When IL-36 signaling was abrogated in vivo, development of BRONJ lesions was ameliorated in mice. Taken together, we showed the pathologic role of IL-36α in BRONJ development by inhibiting collagen expression and demonstrated that IL-36α could be a potential marker and a therapeutic target for the prevention and treatment of BRONJ. © 2016 American Society for Bone and Mineral Research.


Asunto(s)
Osteonecrosis de los Maxilares Asociada a Difosfonatos/patología , Colágeno/metabolismo , Interleucina-1/efectos adversos , Factor de Crecimiento Transformador beta/farmacología , Animales , Anticuerpos Neutralizantes/farmacología , Anticuerpos Neutralizantes/uso terapéutico , Osteonecrosis de los Maxilares Asociada a Difosfonatos/tratamiento farmacológico , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Femenino , Perfilación de la Expresión Génica , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones Endogámicos C57BL , Modelos Biológicos , Fosforilación/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Proteínas Smad/metabolismo
9.
J Endod ; 42(11): 1641-1646, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27637460

RESUMEN

INTRODUCTION: Surgical interventions such as tooth extraction increase the chances of developing osteonecrosis of the jaw in patients receiving bisphosphonates (BPs) for the treatment of bone-related diseases. Tooth extraction is often performed to eliminate preexisting pathological inflammatory conditions that make the tooth unsalvageable; however, the role of such conditions on bisphosphonate-related osteonecrosis of the jaw (BRONJ) development after tooth extraction is not clearly defined. Here, we examined the effects of periapical periodontitis on tooth extraction-induced BRONJ development in mice. METHODS: Periapical periodontitis was induced by exposing the pulp of the maxillary first molar for 3 weeks in C57/BL6 mice that were intravenously administered with BPs. The same tooth was extracted, and after an 3 additional weeks, the mice were harvested for histologic, histomorphometric, and histochemical staining analyses. RESULTS: Pulp exposure induced periapical radiolucency as shown by increased inflammatory cells, tartrate-resistant acid phosphatase-positive osteoclasts, and bone resorption. When BPs were administered, pulp exposure did not induce apical bone resorption despite the presence of inflammatory cells and tartrate-resistant acid phosphatase-positive osteoclasts. Although tooth extraction alone induced BRONJ lesions, pulp exposure further increased tooth extraction-induced BRONJ development as shown by the presence of more bone necrosis. CONCLUSIONS: Our study demonstrates that a preexisting pathological inflammatory condition such as periapical periodontitis is a predisposing factor that may exacerbate BRONJ development after tooth extraction. Our study further provides a clinical implication wherein periapical periodontitis should be controlled before performing tooth extraction in BP users in order to reduce the risk of developing BRONJ.


Asunto(s)
Osteonecrosis de los Maxilares Asociada a Difosfonatos/patología , Periodontitis Periapical/patología , Extracción Dental/efectos adversos , Administración Intravenosa , Animales , Resorción Ósea/dietoterapia , Resorción Ósea/etiología , Resorción Ósea/patología , Difosfonatos/efectos adversos , Modelos Animales de Enfermedad , Femenino , Inflamación/patología , Maxilar/patología , Ratones , Ratones Endogámicos C57BL , Diente Molar/efectos de los fármacos , Diente Molar/patología , Osteoclastos/patología , Enfermedades Periapicales/complicaciones , Enfermedades Periapicales/patología , Ápice del Diente/efectos de los fármacos , Ápice del Diente/patología
10.
J Biol Chem ; 291(19): 10131-47, 2016 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-27022024

RESUMEN

p53 gene mutations are among the most common alterations in cancer. In most cases, missense mutations in one TP53 allele are followed by loss-of-heterozygosity (LOH), so tumors express only mutant p53. TP53 mutations and LOH have been linked, in many cases, with poor therapy response and worse outcome. Despite this, remarkably little is known about how TP53 point mutations are acquired, how LOH occurs, or the cells involved. Nutlin-3a occupies the p53-binding site in MDM2 and blocks p53-MDM2 interaction, resulting in the stabilization and activation of p53 and subsequent growth arrest or apoptosis. We leveraged the powerful growth inhibitory activity of Nutlin-3a to select p53-mutated cells and examined how TP53 mutations arise and how the remaining wild-type allele is lost or inactivated. Mismatch repair (MMR)-deficient colorectal cancer cells formed heterozygote (p53 wild-type/mutant) colonies when cultured in low doses of Nutlin-3a, whereas MMR-corrected counterparts did not. Placing these heterozygotes in higher Nutlin-3a doses selected clones in which the remaining wild-type TP53 was silenced. Our data suggest silencing occurred through a novel mechanism that does not involve DNA methylation, histone methylation, or histone deacetylation. These data indicate MMR deficiency in colorectal cancer can give rise to initiating TP53 mutations and that TP53 silencing occurs via a copy-neutral mechanism. Moreover, the data highlight the use of MDM2 antagonists as tools to study mechanisms of TP53 mutation acquisition and wild-type allele loss or silencing in cells with defined genetic backgrounds.


Asunto(s)
Neoplasias Colorrectales , Metilación de ADN , Reparación de la Incompatibilidad de ADN , Pérdida de Heterocigocidad , Modelos Biológicos , Proteínas Proto-Oncogénicas c-mdm2 , Proteína p53 Supresora de Tumor , Animales , Línea Celular Tumoral , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Humanos , Imidazoles/metabolismo , Piperazinas/metabolismo , Proteínas Proto-Oncogénicas c-mdm2/genética , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
11.
Aging Cell ; 14(5): 838-46, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26138448

RESUMEN

p53, the guardian of the genome, is a tumor suppressor protein and critical for the genomic integrity of the cells. Many studies have shown that intracellular level of p53 is enhanced during replicative senescence in normal fibroblasts, and the enhanced level of p53 is viewed as the cause of senescence. Here, we report that, unlike in normal fibroblasts, the level of intracellular p53 reduces during replicative senescence and oncogene-induced senescence (OIS) in normal human keratinocytes (NHKs). We found that the intracellular p53 level was also decreased in age-dependent manner in normal human epithelial tissues. Senescent NHKs exhibited an enhanced level of p16(INK4A) , induced G2 cell cycle arrest, and lowered the p53 expression and transactivation activity. We found that low level of p53 in senescent NHKs was due to reduced transcription of p53. The methylation status at the p53 promoter was not altered during senescence, but senescent NHKs exhibited notably lower level of acetylated histone 3 (H3) at the p53 promoter in comparison with rapidly proliferating cells. Moreover, p53 knockdown in rapidly proliferating NHKs resulted in the disruption of fidelity in repaired DNA. Taken together, our study demonstrates that p53 level is diminished during replicative senescence and OIS and that such diminution is associated with H3 deacetylation at the p53 promoter. The reduced intracellular p53 level in keratinocytes of the elderly could be a contributing factor for more frequent development of epithelial cancer in the elderly because of the loss of genomic integrity of cells.


Asunto(s)
Senescencia Celular , Queratinocitos/citología , Queratinocitos/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Proliferación Celular , Células Cultivadas , Metilación de ADN , Histonas/metabolismo , Humanos , Proteína p53 Supresora de Tumor/deficiencia , Proteína p53 Supresora de Tumor/genética
12.
Am J Pathol ; 184(11): 3084-93, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25173134

RESUMEN

Drug-induced osteonecrosis of the jaw (ONJ) is a detrimental intraoral lesion that often occurs after dental-related interventions in patients undergoing treatment with bisphosphonates or denosumab, the neutralizing human anti-receptor activator of NF-κB ligand (RANKL) antibody (Ab). The cause of ONJ by these drugs has been speculated to their direct effects on osteoclasts. However, the extent to which osteoclasts contribute to ONJ pathogenesis remains controversial. Herein, by using a tooth-extraction mouse model with i.v. administration of mouse anti-RANKL Ab or the bisphosphonate zoledronate (ZOL), we show that unresorbed bone due to impaired formation or suppressed functions of osteoclasts, respectively, is associated with ONJ development. After tooth extraction, ONJ-like lesions developed 50% in the anti-RANKL Ab-treated mice and 30% in the ZOL-treated mice. Nonviable and unresorbed bone was found more in anti-RANKL Ab-treated mice compared with mice receiving ZOL. All mice receiving anti-RANKL Ab had an undetectable tartrate-resistant acid phosphatase (TRAP) level in the serum and no TRAP-positive osteoclasts at the extracted sockets, whereas ZOL-treated mice had a decreased TRAP level without altering the numbers of TRAP-positive osteoclasts. Interestingly, the absence of newly formed woven bone in the extracted sockets was evident in ONJ-like lesions from both anti-RANKL Ab- and ZOL-treated mice. Our study suggests that the lack of osteoclasts' bone-resorptive functions by these drugs and suppression of woven bone formation after dental trauma may be associated with ONJ development.


Asunto(s)
Osteonecrosis de los Maxilares Asociada a Difosfonatos/patología , Resorción Ósea/patología , Osteoclastos/patología , Ligando RANK/antagonistas & inhibidores , Animales , Anticuerpos Monoclonales Humanizados , Denosumab , Difosfonatos , Modelos Animales de Enfermedad , Imidazoles , Ratones , Osteoclastos/efectos de los fármacos , Ácido Zoledrónico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...