Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 4 de 4
1.
Small ; 20(7): e2305686, 2024 Feb.
Article En | MEDLINE | ID: mdl-37727094

Highly porous carbon materials with a rationally designed pore structure can be utilized as reservoirs for metal or nonmetal components. The use of small-sized metal or metal compound nanoparticles, completely encapsulated by carbon materials, has attracted significant attention as an effective approach to enhancing sodium ion storage properties. These materials have the ability to mitigate structural collapse caused by volume expansion during the charging process, enable short ion transport length, and prevent polysulfide elution. In this study, a concept of highly porous carbon-coated carbon nanotube (CNT) porous microspheres, which serve as excellent reservoir materials is suggested and a porous microsphere is developed by encapsulating iron sulfide nanocrystals within the highly porous carbon-coated CNTs using a sulfidation process. Furthermore, various sulfidation processes to determine the optimal method for achieving complete encapsulation are investigated by comparing the morphologies of diverse iron sulfide-carbon composites. The fully encapsulated structure, combined with the porous carbon, provides ample space to accommodate the significant volume changes during cycling. As a result, the porous iron sulfide-carbon-CNT composite microspheres exhibited outstanding cycling stability (293 mA h g-1 over 600 cycles at 1 A g-1 ) and remarkable rate capability (100 mA h g-1 at 5 A g-1 ).

2.
Small Methods ; 7(3): e2201370, 2023 Mar.
Article En | MEDLINE | ID: mdl-36653930

Recently, nanostructured carbon materials, such as hollow-, yolk-, and core-shell-configuration, have attracted attention in various fields owing to their unique physical and chemical properties. Among them, yolk-shell structured carbon is considered as a noteworthy material for energy storage due to its fast electron transfer, structural robustness, and plentiful active reaction sites. However, the difficulty of the synthesis for controllable carbon yolk-shell has been raised as a limitation. In this study, novel synthesis strategy of nanostructured carbon yolk-shell microspheres that enable to control morphology and size of the yolk part is proposed for the first time. To apply in the appropriate field, cobalt compounds-carbon yolk-shell composites are applied as the anode of alkali-ion batteries and exhibit superior electrochemical performances to those of core-shell structures owing to their unique structural merits. Co3 O4 -C hollow yolk-shell as a lithium-ion battery anode exhibits a long cycling lifetime (619 mA h g-1 for 400 cycles at 2 A g-1 ) and excellent rate capability (286 mA h g-1 at 10 A g-1 ). The discharge capacities of CoSe2 -C hollow yolk-shell as sodium- and potassium-ion battery anodes at the 200th cycle are 311 mA h g-1 at 0.5 A g-1 and 268 mA h g-1 at 0.2 A g-1 , respectively.

3.
Adv Mater ; 34(32): e2202866, 2022 Aug.
Article En | MEDLINE | ID: mdl-35700272

The desire to enhance the efficiency of organic light-emitting devices (OLEDs) has driven to the investigation of advanced materials with fascinating properties. In this work, the efficiency of top-emission OLEDs (TEOLEDs) is enhanced by introducing ampicillin microstructures (Amp-MSs) with dual phases (α-/ß-phase) that induce photoluminescence (PL) and electroluminescence (EL). Moreover, Amp-MSs can adjust the charge balance by Fermi level (EF ) alignment, thereby decreasing the leakage current. The decrease in the wave-guided modes can enhance the light outcoupling through optical scattering. The resulting TEOLED demonstrates a record-high external quantum efficiency (EQE) (maximum: 68.7% and average: 63.4% at spectroradiometer; maximum: 44.8% and average: 42.6% at integrating sphere) with a wider color gamut (118%) owing to the redshift of the spectrum by J-aggregation. Deconvolution of the EL intensities is performed to clarify the contribution of Amp-MSs to the device EQE enhancement (optical scattering by Amp-MSs: 17.0%, PL by radiative energy transfer: 9.1%, and EL by J-aggregated excitons: 4.6%). The proposed TEOLED outperforms the existing frameworks in terms of device efficiency.

4.
Polymers (Basel) ; 14(4)2022 Feb 18.
Article En | MEDLINE | ID: mdl-35215709

Polyampholytes (PA) are a special class of polymers comprising both positive and negative monomers along their sequence. Most proteins have positive and negative residues and are PAs. Proteins have a well-defined sequence while synthetic PAs have a random charge sequence. We investigated the translocation behavior of random polyampholyte chains through a pore under the action of an electric field by means of Monte Carlo simulations. The simulations incorporated a realistic translocation potential profile along an extended asymmetric pore and translocation was studied for both directions of engagement. The study was conducted from the perspective of statistics for disordered systems. The translocation behavior (translocation vs. rejection) was recorded for all 220 sequences comprised of N = 20 charged monomers. The results were compared with those for 107 random sequences of N = 40 to better demonstrate asymptotic laws. At early times, rejection was mainly controlled by the charge sequence of the head part, but late translocation/rejection was governed by the escape from a trapped state over an antagonistic barrier built up along the sequence. The probability distribution of translocation times from all successful attempts revealed a power-law tail. At finite times, there was a population of trapped sequences that relaxed very slowly (logarithmically) with time. If a subensemble of sequences with prescribed net charge was considered the power-law decay was steeper for a more favorable net charge. Our findings were rationalized by theoretical arguments developed for long chains. We also provided operational criteria for the translocation behavior of a sequence, explaining the selection by the translocation process. From the perspective of protein translocation, our findings can help rationalize the behavior of intrinsically disordered proteins (IDPs), which can be modeled as polyampholytes. Most IDP sequences have a strong net charge favoring translocation. Even for sequences with those large net charges, the translocation times remained very dispersed and the translocation was highly sequence-selective.

...