Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 16 de 16
1.
Acta Neuropathol Commun ; 12(1): 93, 2024 Jun 12.
Article En | MEDLINE | ID: mdl-38867333

Choroid plexus tumors (CPTs) are intraventricular tumors derived from the choroid plexus epithelium and occur frequently in children. The aim of this study was to investigate the genomic and epigenomic characteristics of CPT and identify the differences between choroid plexus papilloma (CPP) and choroid plexus carcinoma (CPC). We conducted multiomics analyses of 20 CPT patients including CPP and CPC. Multiomics analysis included whole-genome sequencing, whole-transcriptome sequencing, and methylation sequencing. Mutually exclusive TP53 and EPHA7 point mutations, coupled with the amplification of chromosome 1, were exclusively identified in CPC. In contrast, amplification of chromosome 9 was specific to CPP. Differential gene expression analysis uncovered a significant overexpression of genes related to cell cycle regulation and epithelial-mesenchymal transition pathways in CPC compared to CPP. Overexpression of genes associated with tumor metastasis and progression was observed in the CPC subgroup with leptomeningeal dissemination. Furthermore, methylation profiling unveiled hypomethylation in major repeat regions, including long interspersed nuclear elements, short interspersed nuclear elements, long terminal repeats, and retrotransposons in CPC compared to CPP, implying that the loss of epigenetic silencing of transposable elements may play a role in tumorigenesis of CPC. Finally, the differential expression of AK1, regulated by both genomic and epigenomic factors, emerged as a potential contributing factor to the histological difference of CPP against CPC. Our results suggest pronounced genomic and epigenomic disparities between CPP and CPC, providing insights into the pathogenesis of CPT at the molecular level.


Carcinoma , Choroid Plexus Neoplasms , Papilloma, Choroid Plexus , Humans , Choroid Plexus Neoplasms/genetics , Choroid Plexus Neoplasms/pathology , Choroid Plexus Neoplasms/metabolism , Female , Male , Papilloma, Choroid Plexus/genetics , Papilloma, Choroid Plexus/pathology , Child , Child, Preschool , Carcinoma/genetics , Carcinoma/pathology , DNA Methylation , Infant , Adolescent , Multiomics
2.
Gigascience ; 132024 Jan 02.
Article En | MEDLINE | ID: mdl-38626723

BACKGROUND: Phenome-wide association studies (PheWASs) have been conducted on Asian populations, including Koreans, but many were based on chip or exome genotyping data. Such studies have limitations regarding whole genome-wide association analysis, making it crucial to have genome-to-phenome association information with the largest possible whole genome and matched phenome data to conduct further population-genome studies and develop health care services based on population genomics. RESULTS: Here, we present 4,157 whole genome sequences (Korea4K) coupled with 107 health check-up parameters as the largest genomic resource of the Korean Genome Project. It encompasses most of the variants with allele frequency >0.001 in Koreans, indicating that it sufficiently covered most of the common and rare genetic variants with commonly measured phenotypes for Koreans. Korea4K provides 45,537,252 variants, and half of them were not present in Korea1K (1,094 samples). We also identified 1,356 new genotype-phenotype associations that were not found by the Korea1K dataset. Phenomics analyses further revealed 24 significant genetic correlations, 14 pleiotropic associations, and 127 causal relationships based on Mendelian randomization among 37 traits. In addition, the Korea4K imputation reference panel, the largest Korean variants reference to date, showed a superior imputation performance to Korea1K across all allele frequency categories. CONCLUSIONS: Collectively, Korea4K provides not only the largest Korean genome data but also corresponding health check-up parameters and novel genome-phenome associations. The large-scale pathological whole genome-wide omics data will become a powerful set for genome-phenome level association studies to discover causal markers for the prediction and diagnosis of health conditions in future studies.


Genome-Wide Association Study , Polymorphism, Single Nucleotide , Humans , Phenotype , Genetic Association Studies , Gene Frequency , Republic of Korea , Genotype
3.
Front Cardiovasc Med ; 10: 1226971, 2023.
Article En | MEDLINE | ID: mdl-37465449

Background: Acute myocardial infarction (AMI) is one of the leading causes of death worldwide, and approximately half of AMI-related deaths occur before the affected individual reaches the hospital. The present study aimed to identify and validate genetic variants associated with AMI and their role as prognostic markers. Materials and methods: We conducted a replication study of 29 previously identified novel loci containing 85 genetic variants associated with early-onset AMI using a new independent set of 2,920 Koreans [88 patients with early- and 1,085 patients with late-onset AMI, who underwent percutaneous coronary intervention (PCI), and 1,747 healthy controls]. Results: Of the 85 previously reported early-onset variants, six were confirmed in our genome-wide association study with a false discovery rate of less than 0.05. Notably, rs12639023, a cis-eQTL located in the intergenic region between LINC02005 and CNTN3, significantly increased longitudinal cardiac mortality and recurrent AMI. CNTN3 is known to play a role in altering vascular permeability. Another variant, rs78631167, located upstream of PLAUR and known to function in fibrinolysis, was moderately replicated in this study. By surveying the nearby genomic region around rs78631167, we identified a significant novel locus (rs8109584) located 13 bp downstream of rs78631167. The present study showed that six of the early-onset variants of AMI are applicable to both early- and late-onset cases. Conclusion: Our results confirm markers that can potentially be utilized to predict, screen, prevent, and treat candidate patients with AMI and highlight the potential of rs12639023 as a prognostic marker for cardiac mortality in AMI.

4.
J Korean Med Sci ; 38(15): e117, 2023 Apr 17.
Article En | MEDLINE | ID: mdl-37069811

BACKGROUND: The largest outbreak of enterohemorrhagic Escherichia coli (EHEC) O157:H7 occurred at a preschool in South Korea from June 12 to 29, 2020. This study aimed to analyze the epidemiological and clinical characteristics of EHEC infection in this outbreak. METHODS: Epidemiological investigation was performed on all 184 children and 19 workers at the preschool using a standard questionnaire to assess symptoms, food intake, attendance, and special activity history. Pulsed-field gel electrophoresis analysis of confirmed cases was performed to determine genetic relevance. RESULTS: During this outbreak, 103 children were affected, whereas only one infection was identified in adults. Of the 103 pediatric patients, 85 had symptoms (82.5%), including diarrhea, abdominal pain, bloody stool, fever, and vomiting. Thirty-two patients (31.1%) were hospitalized, 15 (14.6%) were diagnosed with hemolytic uremic syndrome, and 4 (3.9%) received dialysis treatment. Pulsed-field gel electrophoresis analysis identified 4 genotypes with high genetic relevance (92.3%). Epidemiological investigation revealed that this outbreak might have occurred from ingesting foods stored in a refrigerator with a constant temperature above 10°C, which was conducive to bacterial growth. Despite several measures after outbreak recognition, new infections continued to appear. Therefore, the preschool was forced to close on June 19 to prevent further person-to-person transmission. CONCLUSION: Our findings from the response to the largest outbreak will help prepare countermeasures against future EHEC outbreak.


Enterohemorrhagic Escherichia coli , Escherichia coli Infections , Escherichia coli O157 , Adult , Child , Humans , Child, Preschool , Enterohemorrhagic Escherichia coli/genetics , Escherichia coli Infections/diagnosis , Escherichia coli Infections/epidemiology , Escherichia coli Infections/microbiology , Diarrhea/epidemiology , Escherichia coli O157/genetics , Disease Outbreaks , Republic of Korea/epidemiology
5.
Hum Genet ; 142(2): 231-243, 2023 Feb.
Article En | MEDLINE | ID: mdl-36336746

Early-onset acute myocardial infarction (AMI) may have a higher genetic predisposition than late-onset AMI. The present study aimed to identify and characterize germline variants that affect early-onset AMI using whole-genome sequencing (WGS). We performed a genome-wide association study based on the WGS of 1239 Koreans, including 596 early-onset AMI patients and 643 healthy individuals. Patients with AMI who underwent percutaneous coronary intervention (PCI) caused by atherothrombotic occlusive lesions were included in the study. A total of 29 novel loci were found to be associated with early-onset AMI. These loci are involved in thrombosis, fibrinolysis, inflammation, and lipid metabolism. One of the associated single nucleotide variants (SNVs), rs1614576, located upstream of PRKCB, is known to be associated with thrombus formation. Additionally, the results revealed a novel locus, rs78631167, located upstream of PLAUR which plays a critical role in regulating plasminogen activation and is related to fibrinolysis. The association between early-onset AMI and rs9357455, which is located upstream of PHACTR1 and regulates inflammation in AMI, was found. Moreover, we identified a lipid metabolism related genetic risk locus, rs5072, in the APOA1-AS gene. This study provides new evidence supporting the genetic association between early-onset AMI and thrombosis and fibrinolysis, as well as inflammation and lipid metabolism, by analyzing the whole-genome of 596 patients with early-onset AMI who have been treated with PCI. Our findings highlight potential genetic markers for the prediction and management of AMI, as well as for understanding the etiology of AMI.


Myocardial Infarction , Percutaneous Coronary Intervention , Thrombosis , Humans , Myocardial Infarction/genetics , Genome-Wide Association Study , Thrombosis/complications , Inflammation , Whole Genome Sequencing
6.
Front Neurosci ; 17: 1328727, 2023.
Article En | MEDLINE | ID: mdl-38192515

Introduction: Transcranial direct current stimulation (tDCS) has shown positive but inconsistent results in stroke rehabilitation. This could be attributed to inter-individual variations in brain characteristics and stroke lesions, which limit the use of a single tDCS protocol for all post-stroke patients. Optimizing the electrode location in tDCS for each individual using magnetic resonance imaging (MRI) to generate three-dimensional computer models and calculate the electric field (E-field) induced by tDCS at a specific target point in the primary motor cortex may help reduce these inconsistencies. In stroke rehabilitation, locating the optimal position that generates a high E-field in a target area can influence motor recovery. Therefore, this study was designed to determine the effect of personalized tDCS electrode positions on hand-knob activation in post-stroke patients. Method: This is a crossover study with a sample size of 50 participants, who will be randomly assigned to one of six groups and will receive one session of either optimized-active, conventional-active, or sham tDCS, with 24 h between sessions. The tDCS parameters will be 1 mA (5 × 5 cm electrodes) for 20 min. The motor-evoked potential (MEP) will be recorded before and after each session over the target area (motor cortex hand-knob) and the MEP hotspot. The MEP amplitude at the target location will be the primary outcome. Discussion: We hypothesize that the optimized-active tDCS session would show a greater increase in MEP amplitude over the target area in patients with subacute and chronic stroke than conventional and sham tDCS sessions.Clinical trial registration: https://cris.nih.go.kr, identifier KCT0007536.

7.
Mol Cell Probes ; 66: 101873, 2022 12.
Article En | MEDLINE | ID: mdl-36379302

Early detection is critical for minimizing mortality from cancer. Plasma cell-free DNA (cfDNA) contains the signatures of tumor DNA, allowing us to quantify the signature and diagnose early-stage tumors. Here, we report a novel tumor fragment quantification method, TOF (Tumor Originated Fragment) for the diagnosis of lung cancer by quantifying and analyzing both the plasma cfDNA methylation patterns and fragmentomic signatures. TOF utilizes the amount of ctDNA predicted from the methylation density information of each cfDNA read mapped on 6243 lung-tumor-specific CpG markers. The 6243 tumor-specific markers were derived from lung tumor tissues by comparing them with corresponding normal tissues and healthy blood from public methylation data. TOF also utilizes two cfDNA fragmentomic signatures: 1) the short fragment ratio, and 2) the 5' end-motif profile. We used 298 plasma samples to analyze cfDNA signatures using enzymatic methyl-sequencing data from 201 lung cancer patients and 97 healthy controls. The TOF score showed 0.98 of the area under the curve in correctly classifying lung cancer from normal samples. The TOF score resolution was high enough to clearly differentiate even the early-stage non-small cell lung cancer patients from the healthy controls. The same was true for small cell lung cancer patients.


Carcinoma, Non-Small-Cell Lung , Cell-Free Nucleic Acids , Lung Neoplasms , Humans , Lung Neoplasms/diagnosis , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Carcinoma, Non-Small-Cell Lung/genetics , Epigenome , Early Detection of Cancer , DNA, Neoplasm/genetics , Biomarkers, Tumor/genetics , Cell-Free Nucleic Acids/genetics , DNA Methylation/genetics
8.
Gigascience ; 112022 03 24.
Article En | MEDLINE | ID: mdl-35333300

BACKGROUND: KOREF is the Korean reference genome, which was constructed with various sequencing technologies including long reads, short reads, and optical mapping methods. It is also the first East Asian multiomic reference genome accompanied by extensive clinical information, time-series and multiomic data, and parental sequencing data. However, it was still not a chromosome-scale reference. Here, we updated the previous KOREF assembly to a new chromosome-level haploid assembly of KOREF, KOREF_S1v2.1. Oxford Nanopore Technologies (ONT) PromethION, Pacific Biosciences HiFi-CCS, and Hi-C technology were used to build the most accurate East Asian reference assembled so far. RESULTS: We produced 705 Gb ONT reads and 114 Gb Pacific Biosciences HiFi reads, and corrected ONT reads by Pacific Biosciences reads. The corrected ultra-long reads reached higher accuracy of 1.4% base errors than the previous KOREF_S1v1.0, which was mainly built with short reads. KOREF has parental genome information, and we successfully phased it using a trio-binning method, acquiring a near-complete haploid-assembly. The final assembly resulted in total length of 2.9 Gb with an N50 of 150 Mb, and the longest scaffold covered 97.3% of GRCh38's chromosome 2. In addition, the final assembly showed high base accuracy, with <0.01% base errors. CONCLUSIONS: KOREF_S1v2.1 is the first chromosome-scale haploid assembly of the Korean reference genome with high contiguity and accuracy. Our study provides useful resources of the Korean reference genome and demonstrates a new strategy of hybrid assembly that combines ONT's PromethION and PacBio's HiFi-CCS.


Chromosomes , Genome , Humans , Molecular Sequence Annotation , Republic of Korea , Sequence Analysis, DNA/methods
9.
GigaByte ; 2022: gigabyte51, 2022.
Article En | MEDLINE | ID: mdl-36824523

We present LT1, the first high-quality human reference genome from the Baltic States. LT1 is a female de novo human reference genome assembly, constructed using 57× nanopore long reads and polished using 47× short paired-end reads. We utilized 72 GB of Hi-C chromosomal mapping data for scaffolding, to maximize assembly contiguity and accuracy. The contig assembly of LT1 was 2.73 Gbp in length, comprising 4490 contigs with an NG50 value of 12.0 Mbp. After scaffolding with Hi-C data and manual curation, the final assembly has an NG50 value of 137 Mbp and 4699 scaffolds. Assessment of gene prediction quality using Benchmarking Universal Single-Copy Orthologs (BUSCO) identified 89.3% of the single-copy orthologous genes included in the benchmark. Detailed characterization of LT1 suggests it has 73,744 predicted transcripts, 4.2 million autosomal SNPs, 974,616 short indels, and 12,079 large structural variants. These data may be used as a benchmark for further in-depth genomic analyses of Baltic populations.

10.
PLoS One ; 16(2): e0246538, 2021.
Article En | MEDLINE | ID: mdl-33539413

BACKGROUND: The polygenic risk score (PRS) developed for coronary artery disease (CAD) is known to be effective for classifying patients with CAD and predicting subsequent events. However, the PRS was developed mainly based on the analysis of Caucasian genomes and has not been validated for East Asians. We aimed to evaluate the PRS in the genomes of Korean early-onset AMI patients (n = 265, age ≤50 years) following PCI and controls (n = 636) to examine whether the PRS improves risk prediction beyond conventional risk factors. RESULTS: The odds ratio of the PRS was 1.83 (95% confidence interval [CI]: 1.69-1.99) for early-onset AMI patients compared with the controls. For the classification of patients, the area under the curve (AUC) for the combined model with the six conventional risk factors (diabetes mellitus, family history of CAD, hypertension, body mass index, hypercholesterolemia, and current smoking) and PRS was 0.92 (95% CI: 0.90-0.94) while that for the six conventional risk factors was 0.91 (95% CI: 0.85-0.93). Although the AUC for PRS alone was 0.65 (95% CI: 0.61-0.69), adding the PRS to the six conventional risk factors significantly improved the accuracy of the prediction model (P = 0.015). Patients with the upper 50% of PRS showed a higher frequency of repeat revascularization (hazard ratio = 2.19, 95% CI: 1.47-3.26) than the others. CONCLUSIONS: The PRS using 265 early-onset AMI genomes showed improvement in the identification of patients in the Korean population and showed potential for genomic screening in early life to complement conventional risk prediction.


Genome, Human/genetics , Myocardial Infarction/genetics , Myocardial Infarction/therapy , Adult , Female , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study , Humans , Male , Middle Aged , Percutaneous Coronary Intervention , Proportional Hazards Models , Republic of Korea , Risk Factors
11.
Sci Adv ; 6(22): eaaz7835, 2020 05.
Article En | MEDLINE | ID: mdl-32766443

We present the initial phase of the Korean Genome Project (Korea1K), including 1094 whole genomes (sequenced at an average depth of 31×), along with data of 79 quantitative clinical traits. We identified 39 million single-nucleotide variants and indels of which half were singleton or doubleton and detected Korean-specific patterns based on several types of genomic variations. A genome-wide association study illustrated the power of whole-genome sequences for analyzing clinical traits, identifying nine more significant candidate alleles than previously reported from the same linkage disequilibrium blocks. Also, Korea1K, as a reference, showed better imputation accuracy for Koreans than the 1KGP panel. As proof of utility, germline variants in cancer samples could be filtered out more effectively when the Korea1K variome was used as a panel of normals compared to non-Korean variome sets. Overall, this study shows that Korea1K can be a useful genotypic and phenotypic resource for clinical and ethnogenetic studies.


Genome, Human , Genome-Wide Association Study , Asian People , Genotype , Humans , Polymorphism, Single Nucleotide , Republic of Korea
12.
Epidemiol Health ; 42: e2020047, 2020.
Article En | MEDLINE | ID: mdl-32660220

OBJECTIVES: To estimate time-variant reproductive number (Rt) of coronavirus disease 19 based on either number of daily confirmed cases or their onset date to monitor effectiveness of quarantine policies. METHODS: Using number of daily confirmed cases from January 23, 2020 to March 22, 2020 and their symptom onset date from the official website of the Seoul Metropolitan Government and the district office, we calculated Rt using program R's package "EpiEstim". For asymptomatic cases, their symptom onset date was considered as -2, -1, 0, +1, and +2 days of confirmed date. RESULTS: Based on the information of 313 confirmed cases, the epidemic curve was shaped like 'propagated epidemic curve'. The daily Rt based on Rt_c peaked to 2.6 on February 20, 2020, then showed decreased trend and became <1.0 from March 3, 2020. Comparing both Rt from Rt_c and from the number of daily onset cases, we found that the pattern of changes was similar, although the variation of Rt was greater when using Rt_c. When we changed assumed onset date for asymptotic cases (-2 days to +2 days of the confirmed date), the results were comparable. CONCLUSIONS: Rt can be estimated based on Rt_c which is available from daily report of the Korea Centers for Disease Control and Prevention. Estimation of Rt would be useful to continuously monitor the effectiveness of the quarantine policy at the city and province levels.


Basic Reproduction Number/statistics & numerical data , Coronavirus Infections/epidemiology , Epidemics , Pneumonia, Viral/epidemiology , Adolescent , Adult , Aged , Aged, 80 and over , COVID-19 , Child , Coronavirus Infections/prevention & control , Female , Humans , Male , Middle Aged , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Public Policy , Quarantine , Seoul/epidemiology , Time Factors , Young Adult
13.
Front Microbiol ; 9: 2397, 2018.
Article En | MEDLINE | ID: mdl-30349522

Enterohemorrhagic Escherichia coli (EHEC) is a foodborne pathogen that poses a serious threat to humans. Although EHEC is problematic mainly in food products containing meat, recent studies have revealed that many EHEC-associated foodborne outbreaks were attributable to spoiled produce such as sprouts and green leafy vegetables. To understand how EHEC adapts to the environment in fresh produce, we exposed the EHEC isolate FORC_035 to canola spouts (Brassica napus) and water dropwort (Oenanthe javanica) and profiled the transcriptome of this pathogen at 1 and 3 h after incubation with the plant materials. Transcriptome analysis revealed that the expression of genes associated with iron uptake were down-regulated during adaptation to plant tissues. A mutant strain lacking entB, presumably defective in enterobactin biosynthesis, had growth defects in co-culture with water dropwort, and the defective phenotype was complemented by the addition of ferric ion. Furthermore, gallium treatment to block iron uptake inhibited bacterial growth on water dropwort and also hampered biofilm formation. Taken together, these results indicate that iron uptake is essential for the fitness of EHEC in plants and that gallium can be used to prevent the growth of this pathogen in fresh produce.

14.
Korean J Pediatr ; 57(1): 46-9, 2014 Jan.
Article En | MEDLINE | ID: mdl-24578717

CHARGE syndrome has been estimated to occur in 1:10,000 births worldwide and shows various clinical manifestations. It is a genetic disorder characterized by a specific and a recognizable pattern of anomalies. The major clinical features are ocular coloboma, heart malformations, atresia of the choanae, growth retardation, genital hypoplasia, and ear abnormalities. The chromodomain helicase DNA-binding protein 7 (CHD7) gene, located on chromosome 8q12.1, causes CHARGE syndrome. The CHD7 protein is an adenosine triphosphate (ATP)-dependent chromatin remodeling protein. A total of 67% of patients clinically diagnosed with CHARGE syndrome have CHD7 mutations. Five hundred twenty-eight pathogenic and unique CHD7 alterations have been identified so far. We describe a patient with a CHARGE syndrome diagnosis who carried a novel de novo mutation, a c.3896T>C (p. leu1299Pro) missense mutation, in the CHD7 gene. This finding will provide more information for genetic counseling and expand our understanding of the pathogenesis and development of CHARGE syndrome.

15.
Cell Transplant ; 16(10): 1007-12, 2008.
Article En | MEDLINE | ID: mdl-18351016

To understand the fates of human mesenchymal stem cells (hMSCs) following transplantation into a rodent model of middle cerebral artery occlusion (MCAo), magnetic resonance imaging (MRI) techniques were employed, hMSCs were labeled with ferumoxides (Feridex)--protamine sulfate complexes, which were visualized and examined by MRI up to 10 weeks following transplantation. Migration of the transplanted cells to the infarcted area was further confirmed by histological methods. We found that the hMSCs transplanted in MCAo models possess the capacity to migrate to the infarcted area extensively in both ipsilateral and contralateral injections, exhibiting a pathotropism. We also analyzed the detailed migration patterns of transplanted hMSCs. We speculate that the extensive migratory ability of hMSCs may represent a therapeutic potential for developing efficient cell transplantation strategies in stroke.


Infarction, Middle Cerebral Artery/therapy , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/cytology , Animals , Cell Movement , Contrast Media , Dextrans , Ferrosoferric Oxide , Humans , Infarction, Middle Cerebral Artery/diagnosis , Infarction, Middle Cerebral Artery/pathology , Iron , Magnetic Resonance Imaging , Magnetite Nanoparticles , Male , Oxides , Protamines , Rats , Rats, Sprague-Dawley
16.
Cell Transplant ; 16(10): 1007-1012, 2007 Nov.
Article En | MEDLINE | ID: mdl-28866921

To understand the fates of human mesenchymal stem cells (hMSCs) following transplantation into a rodent model of middle cerebral artery occlusion (MCAo), magnetic resonance imaging (MRI) techniques were employed. hMSCs were labeled with ferumoxides (Feridex®)-protamine sulfate complexes, which were visualized and examined by MRI up to 10 weeks following transplantation. Migration of the transplanted cells to the infarcted area was further confirmed by histological methods. We found that the hMSCs transplanted in MCAo models possess the capacity to migrate to the infarcted area extensively in both ipsilateral and contralateral injections, exhibiting a pathotropism. We also analyzed the detailed migration patterns of transplanted hMSCs. We speculate that the extensive migratory ability of hMSCs may represent a therapeutic potential for developing efficient cell transplantation strategies in stroke.

...