Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
AAPS PharmSciTech ; 25(4): 81, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38600252

RESUMEN

MALCORE®, a novel manufacturing technology for drug-containing particles (DCPs), relies on the melt granulation method to produce spherical particles with high drug content. The crucial aspect of particle preparation through MALCORE® involves utilizing polymers that dissolve in the melt component, thereby enhancing viscosity upon heating. However, only aminoalkyl methacrylate copolymer E (AMCE) has been previously utilized. Therefore, this study aims to discover other polymers and comprehend the essential properties these polymers need to possess. The results showed that polyvinylpyrrolidone (PVP) was soluble in the stearic acid (SA) melt component. FTIR examination revealed no interaction between SA and polymer. The phase diagram was used to analyze the state of the SA and polymer mixture during heating. It revealed the mixing ratio and temperature range where the mixture remained in a liquid state. The viscosity of the mixture depended on the quantity and molecular weight of the polymer dissolved in SA. Furthermore, the DCPs prepared using PVP via MALCORE® exhibited similar pharmaceutical properties to those prepared with AMCE. In conclusion, understanding the properties required for polymers in the melt granulation process of MALCORE® allows for the optimization of manufacturing conditions, such as temperature and mixing ratios, for efficient and consistent drug layering.


Asunto(s)
Polímeros , Povidona , Tecnología Farmacéutica/métodos , Temperatura , Excipientes , Tecnología , Metacrilatos , Composición de Medicamentos/métodos , Solubilidad
2.
AAPS PharmSciTech ; 24(1): 28, 2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36577811

RESUMEN

Drug-containing particles (DCPs) are frequently used as cores in the development of solid oral dosage forms. The wet layering technique, which is a typical approach for preparing DCPs, requires the use of solvents and a long manufacturing time. In our previous study, we developed a novel manufacturing technology, MALCORE®, which can solve these problems through melt granulation. However, particle size control methods for DCPs in MALCORE® and the effect of the physical properties of the hydrated silicon dioxide (HSD) used for the core have not been clarified. The aim of this study was to examine the effects of the particle and pore sizes of HSD on the properties of the prepared DCPs. The results showed that the DCPs prepared using MALCORE® could be controlled by the particle size of HSD. The drug-loading efficiency tended to decrease as HSD particle size increased. Additionally, the amount of drug layering in DCPs increased as the pore size of HSD increased, but HSDs with a pore size much larger than the particle size were not able to properly layer the drug. These findings are helpful for applying MALCORE® to a variety of oral drug formulations.


Asunto(s)
Excipientes , Tecnología , Composición de Medicamentos , Congelación , Dióxido de Silicio , Tamaño de la Partícula , Comprimidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA