Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 35
1.
Biosci Biotechnol Biochem ; 85(2): 297-306, 2021 Feb 18.
Article En | MEDLINE | ID: mdl-33590041

Bacillus subtilis YabJ protein belongs to the highly conserved YjgF/YER057c/UK114 family, which has a homotrimeric quaternary structure. The dominant allele of yabJ gene that is caused by a single amino acid mutation of Ser103Phe enables poly-γ-glutamic acid (γPGA) production of B. subtilis under conditions where the cell-density signal transduction was disturbed by the loss of DegQ function. X-ray crystallography of recombinant proteins revealed that unlike the homotrimeric wild-type YabJ, the mutant YabJ(Ser103Phe) had a homotetrameric quaternary structure, and the structural change appeared to be triggered by an inversion of the fifth ß-strand. The YabJ homotetramer has a hole that is highly accessible, penetrating through the tetramer, and 2 surface concaves as potential ligand-binding sites. Western blot analyses revealed that the conformational change was also induced in vivo by the Ser103Phe mutation.


Bacillus subtilis/metabolism , Bacterial Proteins/chemistry , Protein Multimerization , Bacterial Proteins/metabolism , Conserved Sequence , Models, Molecular , Protein Structure, Quaternary
2.
Front Microbiol ; 12: 798010, 2021.
Article En | MEDLINE | ID: mdl-35185823

We determined the whole genome sequences of three bacterial strains, designated as FNDCR1, FNDCF1, and FNDCR2, isolated from a practical nata-de-coco producing bacterial culture. Only FNDCR1 and FNDCR2 strains had the ability to produce cellulose. The 16S rDNA sequence and phylogenetic analysis revealed that all strains belonged to the Komagataeibacter genus but belonged to a different clade within the genus. Comparative genomic analysis revealed cross-strain distribution of duplicated sequences in Komagataeibacter genomes. It is particularly interesting that FNDCR1 has many duplicated sequences within the genome independently of the phylogenetic clade, suggesting that these duplications might have been obtained specifically for this strain. Analysis of the cellulose biosynthesis operon of the three determined strain genomes indicated that several cellulose synthesis-related genes, which are present in FNDCR1 and FNDCR2, were lost in the FNDCF1 strain. These findings reveal important genetic insights into practical nata de coco-producing bacteria that can be used in food development. Furthermore, our results also shed light on the variation in their cellulose-producing abilities and illustrate why genetic traits are unstable for Komagataeibacter and Komagataeibacter-related acetic acid bacteria.

3.
Appl Environ Microbiol ; 86(1)2019 12 13.
Article En | MEDLINE | ID: mdl-31604775

Vegetative cells of Bacillus subtilis can recover from injury after high-hydrostatic-pressure (HHP) treatment at 250 MPa. DNA microarray analysis revealed that substantial numbers of ribosomal genes and translation-related genes (e.g., translation initiation factors) were upregulated during the growth arrest phase after HHP treatment. The transcript levels of cold shock-responsive genes, whose products play key roles in efficient translation, and heat shock-responsive genes, whose products mediate correct protein folding or degrade misfolded proteins, were also upregulated. In contrast, the transcript level of hpf, whose product (Hpf) is involved in ribosome inactivation through the dimerization of 70S ribosomes, was downregulated during the growth arrest phase. Sucrose density gradient sedimentation analysis revealed that ribosomes were dissociated in a pressure-dependent manner and then reconstructed. We also found that cell growth after HHP-induced injury was apparently inhibited by the addition of Mn2+ or Zn2+ to the recovery medium. Ribosome reconstruction in the HHP-injured cells was also significantly delayed in the presence of Mn2+ or Zn2+ Moreover, Zn2+, but not Mn2+, promoted dimer formation of 70S ribosomes in the HHP-injured cells. Disruption of the hpf gene suppressed the Zn2+-dependent accumulation of ribosome dimers, partially relieving the inhibitory effect of Zn2+ on the growth recovery of HHP-treated cells. In contrast, it was likely that Mn2+ prevented ribosome reconstruction without stimulating ribosome dimerization. Our results suggested that both Mn2+ and Zn2+ can prevent ribosome reconstruction, thereby delaying the growth recovery of HHP-injured B. subtilis cells.IMPORTANCE HHP treatment is used as a nonthermal processing technology in the food industry to inactivate bacteria while retaining high quality of foods under suppressed chemical reactions. However, some populations of bacterial cells may survive the inactivation. Although the survivors are in a transient nongrowing state due to HHP-induced injury, they can recover from the injury and then start growing, depending on the postprocessing conditions. The recovery process in terms of cellular components after the injury remains unclear. Transcriptome analysis using vegetative cells of Bacillus subtilis revealed that the translational machinery can preferentially be reconstructed after HHP treatment. We found that both Mn2+ and Zn2+ prolonged the growth-arrested stage of HHP-injured cells by delaying ribosome reconstruction. It is likely that ribosome reconstruction is crucial for the recovery of growth ability in HHP-injured cells. This study provides further understanding of the recovery process in HHP-injured B. subtilis cells.


Bacillus subtilis , Hydrostatic Pressure/adverse effects , Microbial Viability , Ribosomes , Bacillus subtilis/drug effects , Bacillus subtilis/growth & development , Bacillus subtilis/metabolism , Manganese/pharmacology , Manganese Compounds/pharmacology , Ribosomes/drug effects , Ribosomes/genetics , Ribosomes/metabolism , Salts/pharmacology , Transcriptome , Zinc Compounds/pharmacology
4.
Biocontrol Sci ; 24(3): 167-172, 2019.
Article En | MEDLINE | ID: mdl-31527348

Spores of Bacillus subtilis suspended in water or aqueous solution of NaCl, CaCl2, sodium lactate, or calcium lactate at pH 4 - 7 was subjected to spore inactivation by simultaneous combination of medium high hydrostatic pressure (MHHP; 100 MPa) treatment for germination and medium high temperature (MHT; 65℃) treatment for pasteurization of germinated vegetative cells. The spores at pH 4 in NaCl solution and those at pH 5 and 6 in Na lactate solutions were less killed than in water by MHHP+MHT treatment. Spore inactivation was promoted by calcium ion in NaCl solution at pH 4 and in Na lactate solutions at pH 5 and pH 6, while it was more suppressed at pH 5 and pH 6 in Na lactate solutions than at pH 4 in NaCl solution. The spores treated by MHHP+MHT in NaCl or Na lactate solution at pH 4 were further killed by subsequent MHT treatment.


Bacillus subtilis/drug effects , Bacillus subtilis/growth & development , Hydrogen-Ion Concentration , Ions/metabolism , Spores, Bacterial/drug effects , Spores, Bacterial/growth & development , Hydrostatic Pressure , Temperature , Water Microbiology
5.
Appl Microbiol Biotechnol ; 103(16): 6581-6592, 2019 Aug.
Article En | MEDLINE | ID: mdl-31273396

Paenibacillus sp. 598K produces cycloisomaltooligosaccharides (CIs) in culture from dextran and starch. CIs are cyclic oligosaccharides consisting of seven or more α-(1 → 6)-linked-D-glucose residues. The extracellular enzyme CI glucanotransferase (PsCITase), which is the member of glycoside hydrolase family 66, catalyzes the final stage of CI production and produces mainly cycloisomaltoheptaose. We have discovered a novel intracellular CI-degrading dextranase (PsDEX598) from Paenibacillus sp. 598K. The 69.7-kDa recombinant PsDEX598 does not digest isomaltotetraose or shorter isomaltooligosaccharides, but digests longer ones of at least up to isomaltoheptaose. It also digests oligoCIs of cycloisomaltoheptaose, cycloisomaltooctaose, and cycloisomaltononaose better than it does with megaloCIs of cycloisomaltodecaose, cycloisomaltoundecaose, and cycloisomaltododecaose, as well as an α-(1 → 6)-D-glucan of dextran 40. PsDEX598 is produced intracellularly when culture medium is supplemented with cycloisomaltoheptaose or dextran, but not with isomaltooligosaccharides (a mixture of isomaltose, isomaltotriose, and panose), starch, or glucose. The whole genomic DNA sequence of the strain 598K implies that it harbors two genes for enzymes belonging to glycoside hydrolase family 66 (PsCITase and PsDEX598), and PsDEX598 is the only dextranase in the strain. PsDEX598 does not have any carbohydrate-binding modules (CBMs) and has a low similarity (< 30%) with other family 66 dextranases, and the catalytic amino acids of this enzyme are predicted to be Asp191, Asp303, and Glu368. The strain Paenibacillus sp. 598K appears to take up CI-7, so these findings indicate that this bacterium can degrade CIs using a dextranase within the cells and so utilize them as a carbon source for growth.


Cyclodextrins/metabolism , Dextranase/metabolism , Paenibacillus/enzymology , Paenibacillus/metabolism , Biotransformation , Computational Biology , Dextranase/chemistry , Dextranase/genetics , Genome, Bacterial , Molecular Weight , Paenibacillus/genetics , Paenibacillus/growth & development , Substrate Specificity
6.
J Biosci Bioeng ; 128(6): 690-696, 2019 Dec.
Article En | MEDLINE | ID: mdl-31272833

Poly-γ-glutamic acid (γPGA) production by Bacillus subtilis is regulated by the quorum sensing system where DegQ transmits the cell density signal to a DNA-binding protein DegU. A mutation suppressing the γPGA-negative phenotype of degQ gene knock-out mutant (ΔdegQ) was identified through whole genome sequencing. The mutation conferred an amino acid substitution of Ser103 to phenylalanine (S103F) in yabJ that belongs to the highly conserved YjgF/YER057c/UK114 family. Genetic experiments including LacZ-fusion assay of γPGA synthetic operon confirmed that the suppressor mutation (yabJS103F) was responsible for the recovery of γPGA production. The yabJ itself was not essential for the γPGA production and the mutant allele enabled γPGA production of the ΔdegQ strain even in the presence of wild type yabJ. Thus, yabJS103F was a dominant positive allele. degU-lacZ fusion gene was hyper-expressed in cells carrying the yabJS103F, but disruption of yabJ did not affect the transcription level of the degU-lacZ. These observations suggested that YabJ acquired a function to stimulate expression of degU by the S103F mutation which is involved in the regulation of γPGA synthesis.


Bacillus subtilis/metabolism , Bacterial Proteins/metabolism , Gain of Function Mutation , Polyglutamic Acid/analogs & derivatives , Bacillus subtilis/genetics , Bacterial Proteins/genetics , Gene Expression Regulation, Bacterial , Operon , Polyglutamic Acid/biosynthesis , Quorum Sensing , Suppression, Genetic , Trans-Activators/metabolism
7.
J Biosci Bioeng ; 126(5): 611-616, 2018 Nov.
Article En | MEDLINE | ID: mdl-29853298

Escherichia coli cells were treated with high hydrostatic pressure (HHP) at 400 and 600 MPa. Metabolites (70-1027 m/z) extracted from HHP-treated cells were analyzed using capillary electrophoresis-time-of-flight mass spectrometry and were compared with those extracted from control cells (not treated with HHP). A total of 133 metabolites were identified and mapped to metabolic pathways, and many of these (42.1%) decreased due to the HHP treatment, including NAD+, NADP+, ATP, and substrates for DNA synthesis. Principal component analysis suggested that the central sugar and nucleic acid metabolic pathways were strongly influenced by HHP. A bottleneck in the central sugar metabolic pathway was observed in HHP-treated cells, which created a metabolic imbalance; metabolites mapped upstream (glucose 6-phosphate, fructose 6-phosphate, and fructose 1,6-diphosphate) were accumulated and those downstream (3-phosphoglycerate, 2-phosphoglycerate, and phosphoenolpyruvate) were depleted. Ribonucleotides were decreased, but the reduction was moderate compared with that of substrates for DNA synthesis; the exception was ATP, which also substantially decreased. The bottleneck in the glycolytic pathway partly explained the exhaustion of ATP. NAD+/NADH ratio of HHP treated cells was comparable with that of untreated control cells.


Adaptation, Biological/physiology , Escherichia coli/metabolism , Metabolome , Adaptation, Biological/genetics , Carbohydrate Metabolism/genetics , Escherichia coli/genetics , Hydrostatic Pressure , Metabolic Networks and Pathways/genetics
8.
J Biosci Bioeng ; 126(1): 53-62, 2018 Jul.
Article En | MEDLINE | ID: mdl-29502941

Non-targeted metabolomic analyses employing nuclear magnetic resonance- and gas chromatography/mass spectrometry-based techniques were applied for an in-depth characterization of cabbage vinegar, an original agricultural product made from cabbage harvested in Tsumagoi, Japan. Water-soluble and volatile metabolite profiles of cabbage vinegar were compared with those of various vinegars: rice vinegar, grain vinegar, apple vinegar, and black vinegar (Japanese kurozu made of brown rice). Principal component analysis (PCA) of the water-soluble metabolites indicated that cabbage vinegars belonged to an isolated class by the contributions of fructose, pyroglutamic acid, choline, and methiin (S-methylcysteine sulfoxide). Regarding the volatile compounds, the PCA data represented that rice, black, and apple vinegars were characterized by most of the dominant volatiles, such as acetate esters, alcohols, ketones, and acids. Cabbage and grain vinegars were included in the same class although these two vinegars have different flavors. Orthogonal partial least squares-discrimination analysis exhibited the differences in volatile compound profile between cabbage and grain vinegars, revealing that cabbage vinegars were characterized by the presence of sulfides (dimethyl sulfide, dimethyl disulfide, and dimethyl trisulfide), nitriles (allyl cyanide and 4-methylthio-butanenitrile), 3-hexene-1-ol, and crotonic acid. The time-course changes in these highlighted compounds during the acetic acid fermentation of cabbage vinegar suggested that pyroglutamic and crotonic acids were produced through fermentation, whereas choline, methiin, sulfides, nitriles, and 3-hexene-1-ol were derived from cabbage, suggesting the key role of these compounds in the unique taste and flavor of cabbage vinegar.


Acetic Acid/metabolism , Brassica/metabolism , Gas Chromatography-Mass Spectrometry , Magnetic Resonance Spectroscopy , Metabolomics/methods , Acetic Acid/analysis , Alcohols/analysis , Alcohols/metabolism , Brassica/chemistry , Esters/analysis , Esters/metabolism , Fermentation , Flavoring Agents/analysis , Flavoring Agents/chemistry , Flavoring Agents/metabolism , Ketones/analysis , Ketones/metabolism , Principal Component Analysis , Water/chemistry
9.
Biosci Biotechnol Biochem ; 81(6): 1235-1240, 2017 Jun.
Article En | MEDLINE | ID: mdl-28485219

High hydrostatic pressure (HHP) affects various cellular processes. Using a sporulation-deficient Bacillus subtilis strain, we characterized the properties of vegetative cells subjected to HHP. When stationary-phase cells were exposed to 250 MPa of HHP for 10 min at 25 °C, approximately 50% of cells were viable, although they exhibited a prolonged growth lag. The HHP-injured cells autolyzed in the presence of NaCl or KCl (at concentrations ≥100 mM). Superoxide dismutase slightly protected the viability of HHP-treated cells, whereas vegetative catalases had no effect. Thus, unlike HHP-injured Escherichia coli, oxidative stress only slightly affected vegetative B. subtilis subjected to HHP.


Bacillus subtilis/chemistry , Stress, Mechanical , Bacillus subtilis/cytology , Bacillus subtilis/drug effects , Bacillus subtilis/enzymology , Biomechanical Phenomena , Catalase/genetics , Catalase/metabolism , Hydrostatic Pressure , Microbial Viability/drug effects , Osmotic Pressure/drug effects , Oxidative Stress , Potassium Chloride/pharmacology , Sodium Chloride/pharmacology , Superoxide Dismutase/deficiency , Superoxide Dismutase/genetics
10.
Biosci Rep ; 37(2)2017 04 30.
Article En | MEDLINE | ID: mdl-28385816

Paenibacillus sp. 598K cycloisomaltooligosaccharide glucanotransferase (CITase), a member of glycoside hydrolase family 66 (GH66), catalyses the intramolecular transglucosylation of dextran to produce CIs with seven or more degrees of polymerization. To clarify the cyclization reaction and product specificity of the enzyme, we determined the crystal structure of PsCITase. The core structure of PsCITase consists of four structural domains: a catalytic (ß/α)8-domain and three ß-domains. A family 35 carbohydrate-binding module (first CBM35 region of Paenibacillus sp. 598K CITase, (PsCBM35-1)) is inserted into and protrudes from the catalytic domain. The ligand complex structure of PsCITase prepared by soaking the crystal with cycloisomaltoheptaose yielded bound sugars at three sites: in the catalytic cleft, at the joint of the PsCBM35-1 domain and at the loop region of PsCBM35-1. In the catalytic site, soaked cycloisomaltoheptaose was observed as a linear isomaltoheptaose, presumably a hydrolysed product from cycloisomaltoheptaose by the enzyme and occupied subsites -7 to -1. Beyond subsite -7, three glucose moieties of another isomaltooiligosaccharide were observed, and these positions are considered to be distal subsites -13 to -11. The third binding site is the canonical sugar-binding site at the loop region of PsCBM35-1, where the soaked cycloisomaltoheptaose is bound. The structure indicated that the concave surface between the catalytic domain and PsCBM35-1 plays a guiding route for the long-chained substrate at the cyclization reaction.


Glucosyltransferases/chemistry , Glucosyltransferases/metabolism , Isomaltose/metabolism , Paenibacillus/enzymology , Amino Acid Sequence , Binding Sites , Catalytic Domain , Crystallography, X-Ray , Models, Molecular , Paenibacillus/chemistry , Paenibacillus/metabolism , Protein Binding , Protein Conformation , Substrate Specificity
11.
Appl Microbiol Biotechnol ; 101(10): 4115-4128, 2017 May.
Article En | MEDLINE | ID: mdl-28224195

Paenibacillus sp. 598K produces cycloisomaltooligosaccharides (cyclodextrans) from starch even in the absence of dextran. Cycloisomaltooligosaccharide glucanotransferase synthesizes cycloisomaltooligosaccharides exclusively from an α-(1 â†’ 6)-consecutive glucose chain consisting of at least four molecules. Starch is not a substrate of this enzyme. Therefore, we predicted that the bacterium possesses another enzyme system for extending α-(1 â†’ 6)-linked glucoses from starch, which can be used as the substrate for cycloisomaltooligosaccharide glucanotransferase, and identified the transglucosylation enzyme Ps6GT31A. We purified Ps6GT31A from the bacterial culture supernatant, cloned its corresponding gene, and characterized the recombinant enzyme. Ps6GT31A belongs to glycoside hydrolase family 31, and it liberates glucose from the non-reducing end of the substrate in the following order of activity: α-(1 â†’ 4)-> α-(1 â†’ 2)- > α-(1 â†’ 3)- > α-(1 â†’ 6)-glucobiose and maltopentaose > maltotetraose > maltotriose > maltose. Ps6GT31A catalyzes both hydrolysis and transglucosylation. The resulting transglucosylation compounds were analyzed by high-performance liquid chromatography and mass spectrometry. Analysis of the initial products by 13C nuclear magnetic resonance spectroscopy revealed that Ps6GT31A had a strong α-(1 â†’ 4) to α-(1 â†’ 6) transglucosylation activity. Ps6GT31A elongated α-(1 â†’ 6)-linked glucooligosaccharide to at least a degree of polymerization of 10 through a successive transglucosylation reaction. Eventually, cycloisomaltooligosaccharide glucanotransferase creates cycloisomaltooligosaccharides using the transglucosylation products generated by Ps6GT31A as the substrates. Our data suggest that Ps6GT31A is the key enzyme to synthesize α-(1 â†’ 6)-glucan for cycloisomaltooligosaccharide production in dextran-free environments.


Glucans/metabolism , Glucosyltransferases/metabolism , Oligosaccharides/biosynthesis , Paenibacillus/enzymology , Starch/metabolism , Bacillus/enzymology , Chromatography, Liquid , Culture Media/chemistry , Glucosyltransferases/chemistry , Glucosyltransferases/genetics , Hydrolysis , Mass Spectrometry , Oligosaccharides/chemistry , Paenibacillus/genetics , Substrate Specificity
12.
J Biosci Bioeng ; 123(6): 698-706, 2017 Jun.
Article En | MEDLINE | ID: mdl-28214242

Escherichia coli cells were inactivated by high hydrostatic pressure (HHP) at 400-600 MPa and their recovery under various conditions was evaluated by colony counting and flow cytometer (FCM) analyses. The lag time in colony formation and an improved recovery of cells under less oxidative conditions (pyruvate addition to the medium and incubation in anaerobic conditions) were observed for HHP treated cells, which indicated that a significant portion of cells were injured and recovered during incubation after HHP treatment. The lag time for colony formation varied, which suggested a wave of resuscitation and recovered cells may multiply before other injured cells complete resuscitation. The recovery process was monitored by FCM: The FCM profile of cells stained using propidium iodide and SYTO9 indicated that while the majority of cells died just after HHP treatment, the staining pattern of possibly injured cells displayed a specific spectrum that gradually became consistent with that of the dead cell population and a living cell population simultaneously appeared. Pyruvate addition to the medium not only enhanced viability of HHP treated cells, but also reduced the lethal effect of HHP. These observations suggested that the degree of damage by HHP may differ cell-by-cell, and oxidative stress may continue after HHP treatment. Pyruvate addition to the recovery medium enhanced viability of E. coli cells inactivated by HHP treatment in tomato juice as well.


Escherichia coli/cytology , Hydrostatic Pressure , Colony Count, Microbial , Escherichia coli/metabolism , Escherichia coli/physiology , Microbial Viability , Oxidative Stress
13.
Biosci Biotechnol Biochem ; 81(1): 135-146, 2017 Jan.
Article En | MEDLINE | ID: mdl-27885938

Bacillus subtilis strains including the fermented soybean (natto) starter produce capsular polymers consisting of poly-γ-glutamate and levan. Capsular polymers may protect the cells from phage infection. However, bacteriophage ϕNIT1 carries a γ-PGA hydrolase gene (pghP) that help it to counteract the host cell's protection strategy. ϕNIT had a linear double stranded DNA genome of 155,631-bp with a terminal redundancy of 5,103-bp, containing a gene encoding an active levan hydrolase. These capsule-lytic enzyme genes were located in the possible foreign gene cluster regions between central core and terminal redundant regions, and were expressed at the late phase of the phage lytic cycle. All tested natto origin Spounavirinae phages carried both genes for capsule degrading enzymes similar to ϕNIT1. A comparative genomic analysis revealed the diversity among ϕNIT1 and Bacillus phages carrying pghP-like and levan-hydrolase genes, and provides novel understanding on the acquisition mechanism of these enzymatic genes.


Bacillus Phages/genetics , Bacillus Phages/physiology , Bacillus subtilis/virology , Genomics , Glycoside Hydrolases/genetics , Polyglutamic Acid/analogs & derivatives , Soy Foods , Amino Acid Sequence , Bacillus Phages/enzymology , Bacillus subtilis/cytology , Bacillus subtilis/metabolism , Capsules , Fermentation , Gene Expression Regulation, Viral , Genome, Viral/genetics , Glycoside Hydrolases/chemistry , Glycoside Hydrolases/metabolism , Polyglutamic Acid/metabolism , Solubility
14.
PLoS One ; 10(10): e0141369, 2015.
Article En | MEDLINE | ID: mdl-26505996

Bacillus subtilis is the main component in the fermentation of soybeans. To investigate the genetics of the soybean-fermenting B. subtilis strains and its relationship with the productivity of extracellular poly-γ-glutamic acid (γPGA), we sequenced the whole genome of eight B. subtilis stains isolated from non-salted fermented soybean foods in Southeast Asia. Assembled nucleotide sequences were compared with those of a natto (fermented soybean food) starter strain B. subtilis BEST195 and the laboratory standard strain B. subtilis 168 that is incapable of γPGA production. Detected variants were investigated in terms of insertion sequences, biotin synthesis, production of subtilisin NAT, and regulatory genes for γPGA synthesis, which were related to fermentation process. Comparing genome sequences, we found that the strains that produce γPGA have a deletion in a protein that constitutes the flagellar basal body, and this deletion was not found in the non-producing strains. We further identified diversity in variants of the bio operon, which is responsible for the biotin auxotrophism of the natto starter strains. Phylogenetic analysis using multilocus sequencing typing revealed that the B. subtilis strains isolated from the non-salted fermented soybeans were not clustered together, while the natto-fermenting strains were tightly clustered; this analysis also suggested that the strain isolated from "Tua Nao" of Thailand traces a different evolutionary process from other strains.


Bacillus subtilis/genetics , Genome, Bacterial , Glycine max/microbiology , Polyglutamic Acid/analogs & derivatives , DNA Transposable Elements/genetics , Food Microbiology , High-Throughput Nucleotide Sequencing , Phylogeny , Polyglutamic Acid/genetics , Polyglutamic Acid/metabolism , Soy Foods/microbiology , Subtilisins/genetics , Thailand
15.
Biochem J ; 467(2): 259-70, 2015 Apr 15.
Article En | MEDLINE | ID: mdl-25649478

Cycloisomaltooligosaccharide glucanotransferase (CITase) is a member of glycoside hydrolase family 66 and it produces cycloisomaltooligosaccharides (CIs). Small CIs (CI-7-9) and large CIs (CI-≥10) are designated as oligosaccharide-type CIs (oligo-CIs) and megalosaccharide-type CIs (megalo-CIs) respectively. CITase from Bacillus circulans T-3040 (BcCITase) produces mainly CI-8 with little megalo-CIs. It has two family 35 carbohydrate-binding modules (BcCBM35-1 and BcCBM35-2). BcCBM35-1 is inserted in a catalytic domain of BcCITase and BcCBM35-2 is located at the C-terminal region. Our previous studies suggested that BcCBM35-1 has two substrate-binding sites (B-1 and B-2) [Suzuki et al. (2014) J. Biol. Chem. 289, 12040-12051]. We implemented site-directed mutagenesis of BcCITase to explore the preference for product size on the basis of the 3D structure of BcCITase. Mutational studies provided evidence that B-1 and B-2 contribute to recruiting substrate and maintaining product size respectively. A mutant (mutant-R) with four mutations (F268V, D469Y, A513V and Y515S) produced three times as much megalo-CIs (CI-10-12) and 1.5 times as much total CIs (CI-7-12) as compared with the wild-type (WT) BcCITase. The 3D structure of the substrate-enzyme complex of mutant-R suggested that the modified product size specificity was attributable to the construction of novel substrate-binding sites in the B-2 site of BcCBM35-1 and reactivity was improved by mutation on subsite -3 on the catalytic domain.


Amino Acid Substitution , Bacterial Proteins , Glucosyltransferases , Mutagenesis, Site-Directed , Oligosaccharides , Bacillus/enzymology , Bacillus/genetics , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Glucosyltransferases/chemistry , Glucosyltransferases/genetics , Mutation, Missense , Oligosaccharides/biosynthesis , Oligosaccharides/chemistry , Oligosaccharides/genetics , Protein Structure, Tertiary , Structure-Activity Relationship
16.
Biosci Biotechnol Biochem ; 78(12): 2120-7, 2014.
Article En | MEDLINE | ID: mdl-25130618

Some Lactobacillus brevis strains were found to aggregate upon the addition of xylan after screening for lactic acid bacteria that interact with plant materials. The S-layer proteins of cell surface varied among the strains. The strains that displayed xylan-mediated aggregation retained its ability even after the removal of S-layer proteins. L. brevis had negative zeta potentials. A correlation between the strength of aggregation and zeta potential was not observed. However, partial removal of S-layer proteins resulted in decreases in the electric potential and aggregation ability of some strains. Therefore, xylan-mediated aggregation of L. brevis was considered to be caused by an electrostatic effect between the cells and xylan. L. brevis also aggregated in the presence of mucin, and the strengths of aggregation among the strains were similar to that induced by xylan. Thus, xylan- and mucin-mediated L. brevis aggregation was supposed to be caused by a similar mechanism.


Levilactobacillus brevis/drug effects , Mucins/pharmacology , Xylans/pharmacology , Culture Media/chemistry , Levilactobacillus brevis/chemistry , Levilactobacillus brevis/growth & development , Lithium Chloride/pharmacology , Membrane Glycoproteins/chemistry , Membrane Glycoproteins/isolation & purification , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Static Electricity , Surface Properties
17.
J Biosci Bioeng ; 118(6): 665-71, 2014 Dec.
Article En | MEDLINE | ID: mdl-24928651

The 5.6 Gb metagenome of free-living microbial flora in the gut of the lower termite Coptotermes gestroi, harvested in Vietnam, was sequenced using Illumina technology. Genes related to biomass degradation were mined for a better understanding of biomass digestion in the termite gut and to identify lignocellulolytic enzymes applicable to biofuel production. The sequencing generated 5.4 Gb of useful reads, containing 125,431 ORFs spanning 78,271,365 bp, 80% of which was derived from bacteria. The 12 most abundant bacterial orders were Spirochaetales, Lactobacillales, Bacteroidales, Clostridiales, Enterobacteriales, Pseudomonades, Synergistales, Desulfovibrionales, Xanthomonadales, Burkholderiales, Bacillales, and Actinomycetales, and 1460 species were estimated. Of more than 12,000 ORFs with predicted functions related to carbohydrate metabolism, 587 encoding hydrolytic enzymes for cellulose, hemicellulose, and pectin were identified. Among them, 316 ORFs were related to cellulose degradation, and included ß-glucosidases, 6-phospho-ß-glucosidases, licheninases, glucan endo-1,3-ß-D-glucosidases, endoglucanases, cellulose 1,4-ß-cellobiosidases, glucan 1,3-ß-glucosidases, and cellobiose phosphorylases. In addition, 259 ORFs were related to hemicellulose degradation, encoding endo-1,4-ß-xylanases, α-galactosidases, α-N-arabinofuranosidases, xylan 1,4-ß-xylosidases, arabinan endo-1,5-α-L-arabinosidases, endo-1,4-ß-mannanases, and α-glucuronidases. Twelve ORFs encoding pectinesterases and pectate lyases were also obtained. To our knowledge, this is the first successful application of Illumina-based de novo sequencing for the analysis of a free-living bacterial community in the gut of a lower termite C. gestroi and for mining genes related to lignocellulose degradation from the gut bacteria.


Bacteria/enzymology , Bacteria/genetics , Gastrointestinal Tract/microbiology , Genes, Bacterial/genetics , Isoptera/microbiology , Lignin/metabolism , Metagenome/genetics , Animals , Bacteria/classification , Bacteria/isolation & purification , Base Sequence , Biomass , Carboxylic Ester Hydrolases/genetics , Carboxylic Ester Hydrolases/metabolism , Cellulases/genetics , Cellulases/metabolism , Metagenomics , Open Reading Frames/genetics , Sequence Analysis, DNA , Vietnam
18.
Appl Microbiol Biotechnol ; 98(9): 3947-54, 2014 May.
Article En | MEDLINE | ID: mdl-24463763

Bacillus circulans T-3040 produces cycloisomaltooligosaccharide glucanotransferase (CITase) and cycloisomaltooligosaccharides (cyclodextrans, CIs) when it is grown in media containing dextran as the carbon source. To investigate the effects of carbon sources on CITase activity, B. circulans T-3040 was cultured with glucose; sucrose; a mixture of isomaltose, isomaltotriose, and panose (IMOs); a mixture of maltohexaose and maltoheptaose (G67); dextrin (average degree of polymerization = 36); dextran 40; and soluble starch. In addition to dextran 40, CIs were produced when the T-3040 strain was grown in media containing soluble starch as the sole carbon source. CITase production was induced by dextran 40, IMOs, and soluble starch but not by G67 or dextrin, which suggests that α-1,6 glucosidic linkages are required for CITase induction. Although CITase was induced by IMOs, no CIs were produced in the culture. CI-producing activity in the presence of soluble starch as the substrate (SS-CITase activity) was observed only in cultures containing dextran 40 or soluble starch. The production of CITase was significantly unaffected by glucose addition, but SS-CITase activity almost completely disappeared after glucose addition. A 135-kDa protein was found to contribute to CI formation from starch in the presence of CITase. This protein had a disproportionation activity with maltooligosaccharides, and its induction and inhibition system may be different from those of CITase.


Bacillus/enzymology , Bacillus/metabolism , Glucosyltransferases/metabolism , Oligosaccharides/metabolism , Starch/metabolism , Carbon/metabolism , Culture Media/chemistry , Dextrans/metabolism
19.
J Food Prot ; 76(6): 1021-6, 2013 Jun.
Article En | MEDLINE | ID: mdl-23726198

We investigated the fate of radioactive cesium ((134)Cs plus (137)Cs) during the production of tofu, natto, and nimame (boiled soybean) from a contaminated Japanese soybean cultivar harvested in FY2011. Tofu, natto, and nimame were made from soybean grains containing radioactive cesium (240 to 340 Bq/kg [dry weight]), and the radioactive cesium in the processed soybean foods and in by-product fractions such as okara, broth, and waste water was measured with a germanium semiconductor detector. The processing factor is the ratio of radioactive cesium concentration of a product before and after processing. For tofu, natto, nimame, and for the by-product okara, processing factors were 0.12, 0.40, 0.20, and 0.18, respectively; this suggested that these three soybean foods and okara, used mainly as an animal feed, can be considered safe for human and animal consumption according to the standard limit for radioactive cesium of soybean grains. Furthermore, the ratio of radioactive cesium concentrations in the cotyledon, hypocotyl, and seed coat portions of the soybean grain was found to be approximately 1:1:0.4.


Cesium Radioisotopes/analysis , Consumer Product Safety , Food Contamination, Radioactive/analysis , Glycine max/chemistry , Soy Foods/analysis , Animal Feed , Animals , Humans
20.
J Biosci Bioeng ; 115(6): 654-7, 2013 Jun.
Article En | MEDLINE | ID: mdl-23318248

The ability to produce exoenzymes of a Bacillus subtilis natto starter strain was improved through selection of a rifampicin-resistant phenotype. Proteomic and zymographic analyses showed increased production of cellulolytic and proteolytic enzymes and decreased production of levansucrase. This mutant had a mutation (S487L) in the ß-subunit of the RNA polymerase.


Antibiotics, Antitubercular/pharmacology , Bacillus subtilis/enzymology , Cellulases/biosynthesis , Fermentation , Peptide Hydrolases/biosynthesis , Rifampin/pharmacology , Soy Foods , Bacillus subtilis/drug effects , Bacillus subtilis/genetics , Drug Resistance, Bacterial , Extracellular Space/enzymology , Phenotype
...