Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
2.
Diabetes Care ; 45(8): 1907-1910, 2022 08 01.
Article En | MEDLINE | ID: mdl-35678724

OBJECTIVE: Very young children with type 1 diabetes often struggle to achieve glycemic targets, putting them at risk for long-term complications and creating an immense management burden for caregivers. We conducted the first evaluation of the Omnipod 5 Automated Insulin Delivery System in this population. RESEARCH DESIGN AND METHODS: A total of 80 children aged 2.0-5.9 years used the investigational system in a single-arm study for 13 weeks following 14 days of baseline data collection with their usual therapy. RESULTS: There were no episodes of severe hypoglycemia or diabetic ketoacidosis. By study end, HbA1c decreased by 0.55% (6.0 mmol/mol) (P < 0.0001). Time with sensor glucose levels in target range 70-180 mg/dL increased by 10.9%, or 2.6 h/day (P < 0.0001), while time with levels <70 mg/dL declined by median 0.27% (P = 0.0204). CONCLUSIONS: Use of the automated insulin delivery system was safe, and participants experienced improved glycemic measures and reduced hypoglycemia during the study phase compared with baseline.


Diabetes Mellitus, Type 1 , Hypoglycemia , Blood Glucose , Child , Child, Preschool , Diabetes Mellitus, Type 1/drug therapy , Diabetes Mellitus, Type 1/epidemiology , Glycated Hemoglobin/analysis , Humans , Hypoglycemia/epidemiology , Hypoglycemic Agents/adverse effects , Insulin/adverse effects , Insulin Infusion Systems , Insulin, Regular, Human/therapeutic use
3.
Clin Diabetes ; 40(2): 168-184, 2022.
Article En | MEDLINE | ID: mdl-35669307

Automated insulin delivery (AID) systems, which connect an insulin pump, continuous glucose monitoring system, and software algorithm to automate insulin delivery based on real-time glycemic data, hold promise for improving outcomes and reducing therapeutic burden for people with diabetes. This article reviews the features of the Omnipod 5 Automated Insulin Delivery System and how it compares to other AID systems available on or currently under review for the U.S. market. It also provides practical guidance for clinicians on how to effectively train and onboard people with diabetes on the Omnipod 5 System, including how to personalize therapy and optimize glycemia. Many people with diabetes receive their diabetes care in primary care settings rather than in a diabetes specialty clinic. Therefore, it is important that primary care providers have access to resources to support the adoption of AID technologies such as the Omnipod 5 System.

4.
Diabetes Technol Ther ; 23(6): 410-424, 2021 06.
Article En | MEDLINE | ID: mdl-33325779

Background: The objective of this study was to assess the safety and effectiveness of the first commercial configuration of a tubeless automated insulin delivery system, Omnipod® 5, in children (6-13.9 years) and adults (14-70 years) with type 1 diabetes (T1D) in an outpatient setting. Materials and Methods: This was a single-arm, multicenter, prospective clinical study. Data were collected over a 14-day standard therapy (ST) phase followed by a 14-day hybrid closed-loop (HCL) phase, where participants (n = 36) spent 72 h at each of three prespecified glucose targets (130, 140, and 150 mg/dL, 9 days total) then 5 days with free choice of glucose targets (110-150 mg/dL) using the Omnipod 5. Remote safety monitoring alerts were enabled during the HCL phase. Primary endpoints were difference in time in range (TIR) (70-180 mg/dL) between ST and HCL phases and proportion of participants reporting serious device-related adverse events. Results: Mean TIR was significantly higher among children in the free-choice period overall (64.9% ± 12.2%, P < 0.01) and when using a 110 mg/dL target (71.2% ± 10.2%, P < 0.01), a 130 mg/dL target (61.5% ± 7.7%, P < 0.01), and a 140 mg/dL target (64.8% ± 11.6%, P < 0.01), and among adults using a 130 mg/dL target (75.1% ± 11.6%, P < 0.05), compared to the ST phase (children: 51.0% ± 13.3% and adults: 65.6% ± 15.7%). There were no serious device-related adverse events reported during the HCL phase, nor were there episodes of severe hypoglycemia or diabetic ketoacidosis. Conclusion: The Omnipod 5 System was safe and effective when used at glucose targets from 110 to 150 mg/dL for 14 days at home in children and adults with T1D.


Diabetes Mellitus, Type 1 , Adult , Blood Glucose , Child , Diabetes Mellitus, Type 1/drug therapy , Glucose , Humans , Hypoglycemic Agents/therapeutic use , Insulin/therapeutic use , Insulin Infusion Systems , Outpatients , Prospective Studies
5.
Diabetes Technol Ther ; 23(5): 384-391, 2021 05.
Article En | MEDLINE | ID: mdl-33226837

Background: Glycemic control is particularly challenging for toddlers and preschoolers with type 1 diabetes (T1D), and data on the use of closed-loop systems in this age range are limited. Materials and Methods: We studied use of a modified investigational version of the Tandem t:slim X2 Control-IQ system in children aged 2 to 5 years during 48 h in an outpatient supervised hotel (SH) setting followed by 3 days of home use to examine the safety of this system in young children. Meals and snacks were not restricted and boluses were estimated per parents' usual routine. At least 30 min of daily exercise was required during the SH phase. All participants were remotely monitored by study staff while on closed-loop in addition to monitoring by at least one parent throughout the study. Results: Twelve participants diagnosed with T1D for at least 3 months with mean age 4.7 ± 1.0 years (range 2.0-5.8 years) and hemoglobin A1c of 7.3% ± 0.8% were enrolled at three sites. With use of Control-IQ, the percentage of participants meeting our prespecified goals of less than 6% time below 70 mg/dL and less than 40% time above 180 mg/dL increased from 33% to 83%. Control-IQ use significantly improved percent time in range (70-180 mg/dL) compared to baseline (71.3 ± 12.5 vs. 63.7 ± 15.1, P = 0.016). All participants completed the study with no adverse events. Conclusions: In this brief pilot study, use of the modified Control-IQ system was safe in 2-5-year-old children with T1D and improved glycemic control.


Diabetes Mellitus, Type 1 , Insulin , Blood Glucose , Child, Preschool , Diabetes Mellitus, Type 1/drug therapy , Humans , Hypoglycemic Agents/therapeutic use , Insulin/therapeutic use , Insulin Infusion Systems , Pilot Projects
6.
Diabetes Technol Ther ; 21(6): 356-363, 2019 06.
Article En | MEDLINE | ID: mdl-31095423

Background: Typically, closed-loop control (CLC) studies excluded patients with significant hypoglycemia. We evaluated the effectiveness of hybrid CLC (HCLC) versus sensor-augmented pump (SAP) in reducing hypoglycemia in this high-risk population. Methods: Forty-four subjects with type 1 diabetes, 25 women, 37 ± 2 years old, HbA1c 7.4% ± 0.2% (57 ± 1.5 mmol/mol), diabetes duration 19 ± 2 years, on insulin pump, were enrolled at the University of Virginia (N = 33) and Stanford University (N = 11). Eligibility: increased risk of hypoglycemia confirmed by 1 week of blinded continuous glucose monitor (CGM); randomized to 4 weeks of home use of either HCLC or SAP. Primary/secondary outcomes: risk for hypoglycemia measured by the low blood glucose index (LBGI)/CGM-based time in ranges. Results: Values reported: mean ± standard deviation. From baseline to the final week of study: LBGI decreased more on HCLC (2.51 ± 1.17 to 1.28 ± 0.5) than on SAP (2.1 ± 1.05 to 1.79 ± 0.98), P < 0.001; percent time below 70 mg/dL (3.9 mmol/L) decreased on HCLC (7.2% ± 5.3% to 2.0% ± 1.4%) but not on SAP (5.8% ± 4.7% to 4.8% ± 4.5%), P = 0.001; percent time within the target range 70-180 mg/dL (3.9-10 mmol/L) increased on HCLC (67.8% ± 13.5% to 78.2% ± 10%) but decreased on SAP (65.6% ± 12.9% to 59.6% ± 16.5%), P < 0.001; percent time above 180 mg/dL (10 mmol/L) decreased on HCLC (25.1% ± 15.3% to 19.8% ± 10.1%) but increased on SAP (28.6% ± 14.6% to 35.6% ± 17.6%), P = 0.009. Mean glucose did not change significantly on HCLC (144.9 ± 27.9 to 143.8 ± 14.4 mg/dL [8.1 ± 1.6 to 8.0 ± 0.8 mmol/L]) or SAP (152.5 ± 24.3 to 162.4 ± 28.2 [8.5 ± 1.4 to 9.0 ± 1.6]), P = ns. Conclusions: Compared with SAP therapy, HCLC reduced the risk and frequency of hypoglycemia, while improving time in target range and reducing hyperglycemia in people at moderate to high risk of hypoglycemia.


Blood Glucose Self-Monitoring/instrumentation , Diabetes Mellitus, Type 1/drug therapy , Equipment Design/methods , Hypoglycemia/prevention & control , Insulin Infusion Systems , Adult , Blood Glucose/analysis , Blood Glucose Self-Monitoring/methods , Diabetes Mellitus, Type 1/blood , Diabetes Mellitus, Type 1/complications , Female , Humans , Hyperglycemia/chemically induced , Hypoglycemia/etiology , Hypoglycemic Agents/therapeutic use , Insulin/therapeutic use , Male
...