Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Biol Cell ; 35(2): ar21, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38088875

RESUMEN

In vertebrates, two distinct condensin complexes, condensin I and condensin II, cooperate to drive mitotic chromosome assembly. It remains largely unknown how the two complexes differentially contribute to this process at a mechanistic level. We have previously dissected the role of individual subunits of condensin II by introducing recombinant complexes into Xenopus egg extracts. Here we extend these efforts by introducing a modified functional assay using extracts depleted of topoisomerase IIα (topo IIα), which allows us to further elucidate the functional similarities and differences between condensin I and condensin II. The intrinsically disordered C-terminal region of the CAP-D3 subunit (the D3 C-tail) is a major target of Cdk1 phosphorylation, and phosphorylation-deficient mutations in this region impair condensin II functions. We also identify a unique helical structure in CAP-D3 (the D3 HEAT docker) that is predicted to directly interact with CAP-G2. Deletion of the D3 HEAT docker, along with the D3 C-tail, enhances the ability of condensin II to assemble mitotic chromosomes. Taken together, we propose a self-suppression mechanism unique to condensin II that is released by mitotic phosphorylation. Evolutionary implications of our findings are also discussed.


Asunto(s)
Cromosomas , Proteínas de Unión al ADN , Animales , Proteínas de Unión al ADN/fisiología , Complejos Multiproteicos/genética , Adenosina Trifosfatasas/genética , Mitosis
2.
Biophys J ; 122(19): 3869-3881, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37571823

RESUMEN

Condensin-mediated loop extrusion is now considered as the main driving force of mitotic chromosome assembly. Recent experiments have shown, however, that a class of mutant condensin complexes deficient in loop extrusion can assemble chromosome-like structures in Xenopus egg extracts, although these structures are somewhat different from those assembled by wild-type condensin complexes. In the absence of topoisomerase II (topo II), the mutant condensin complexes produce an unusual round-shaped structure termed a bean, which consists of a DNA-dense central core surrounded by a DNA-sparse halo. The mutant condensin complexes accumulate in the core, whereas histones are more concentrated in the halo than in the core. We consider that this peculiar structure serves as a model system to study how DNA entanglements, nucleosomes, and condensin functionally crosstalk with each other. To gain insight into how the bean structure is formed, here we construct a theoretical model. Our theory predicts that the core is formed by attractive interactions between mutant condensin complexes, whereas the halo is stabilized by the energy reduction through the selective accumulation of nucleosomes. The formation of the halo increases the elastic free energy due to the DNA entanglement in the core, but the latter free energy is compensated by condensin complexes that suppress the assembly of nucleosomes.


Asunto(s)
Mitosis , Nucleosomas , Cromosomas , ADN/genética , Elasticidad
3.
Elife ; 112022 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-36511239

RESUMEN

Condensin I is a pentameric protein complex that plays an essential role in mitotic chromosome assembly in eukaryotic cells. Although it has been shown that condensin I loading is mitosis specific, it remains poorly understood how the robust cell cycle regulation of condensin I is achieved. Here, we set up a panel of in vitro assays to demonstrate that cell cycle-specific loading of condensin I is regulated by the N-terminal tail (N-tail) of its kleisin subunit CAP-H. Deletion of the N-tail accelerates condensin I loading and chromosome assembly in Xenopus egg mitotic extracts. Phosphorylation-deficient and phosphorylation-mimetic mutations in the CAP-H N-tail decelerate and accelerate condensin I loading, respectively. Remarkably, deletion of the N-tail enables condensin I to assemble mitotic chromosome-like structures even in interphase extracts. Together with other extract-free functional assays in vitro, our results uncover one of the multilayered mechanisms that ensure cell cycle-specific loading of condensin I onto chromosomes.


Asunto(s)
Adenosina Trifosfatasas , Cromosomas , Ciclo Celular , Cromosomas/metabolismo , Adenosina Trifosfatasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Mitosis , Proteínas de Ciclo Celular/genética
4.
Elife ; 112022 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-35983835

RESUMEN

In vertebrates, condensin I and condensin II cooperate to assemble rod-shaped chromosomes during mitosis. Although the mechanism of action and regulation of condensin I have been studied extensively, our corresponding knowledge of condensin II remains very limited. By introducing recombinant condensin II complexes into Xenopus egg extracts, we dissect the roles of its individual subunits in chromosome assembly. We find that one of two HEAT subunits, CAP-D3, plays a crucial role in condensin II-mediated assembly of chromosome axes, whereas the other HEAT subunit, CAP-G2, has a very strong negative impact on this process. The structural maintenance of chromosomes ATPase and the basic amino acid clusters of the kleisin subunit CAP-H2 are essential for this process. Deletion of the C-terminal tail of CAP-D3 increases the ability of condensin II to assemble chromosomes and further exposes a hidden function of CAP-G2 in the lateral compaction of chromosomes. Taken together, our results uncover a multilayered regulatory mechanism unique to condensin II, and provide profound implications for the evolution of condensin II.


Asunto(s)
Adenosina Trifosfatasas , Complejos Multiproteicos , Adenosina Trifosfatasas/metabolismo , Animales , Cromosomas/metabolismo , Proteínas de Unión al ADN , Mitosis , Complejos Multiproteicos/metabolismo , Subunidades de Proteína/metabolismo
5.
J Cell Biol ; 221(3)2022 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-35045152

RESUMEN

Condensin I is a five-subunit protein complex that is central to mitotic chromosome assembly in eukaryotic cells. Despite recent progress, its molecular mechanisms of action remain to be fully elucidated. By using Xenopus egg extracts as a functional assay, we find that condensin I complexes harboring mutations in its kleisin subunit CAP-H produce chromosomes with confined axes in the presence of topoisomerase IIα (topo IIα) and highly compact structures (termed "beans") with condensin-positive central cores in its absence. The bean phenotype depends on the SMC ATPase cycle and can be reversed by subsequent addition of topo IIα. The HEAT repeat subunit CAP-D2, but not CAP-G, is essential for the bean formation. Notably, loop extrusion activities of the mutant complexes cannot explain the chromosomal defects they exhibit in Xenopus egg extracts, implying that a loop extrusion-independent mechanism contributes to condensin I-mediated chromosome assembly and shaping. We provide evidence that condensin-condensin interactions underlie these processes.


Asunto(s)
Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Cromosomas/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Adenosina Trifosfatasas/genética , Secuencias de Aminoácidos , Animales , Proteínas Cromosómicas no Histona/metabolismo , ADN-Topoisomerasas de Tipo II/metabolismo , Proteínas de Unión al ADN/genética , Humanos , Ratones , Complejos Multiproteicos/genética , Mutación/genética , Fenotipo , Estructura Secundaria de Proteína , Relación Estructura-Actividad , Xenopus
6.
EMBO Rep ; 20(5)2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30858338

RESUMEN

Condensin I is a multi-protein complex that plays an essential role in mitotic chromosome assembly and segregation in eukaryotes. It is composed of five subunits: two SMC (SMC2 and SMC4), a kleisin (CAP-H), and two HEAT-repeat (CAP-D2 and CAP-G) subunits. Although balancing acts of the two HEAT-repeat subunits have been demonstrated to enable this complex to support the dynamic assembly of chromosomal axes in vertebrate cells, its underlying mechanisms remain poorly understood. Here, we report the crystal structure of a human condensin I subcomplex comprising hCAP-G and hCAP-H. hCAP-H binds to the concave surfaces of a harp-shaped HEAT-repeat domain of hCAP-G. Physical interaction between hCAP-G and hCAP-H is indeed essential for mitotic chromosome assembly recapitulated in Xenopus egg cell-free extracts. Furthermore, this study reveals that the human CAP-G-H subcomplex has the ability to interact with not only double-stranded DNA, but also single-stranded DNA, suggesting functional divergence of the vertebrate condensin I complex in proper mitotic chromosome assembly.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Complejos Multiproteicos/metabolismo , Proteínas Nucleares/metabolismo , Subunidades de Proteína/metabolismo , Secuencia de Aminoácidos , Animales , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Segregación Cromosómica/fisiología , Cromosomas/metabolismo , ADN de Cadena Simple/metabolismo , Humanos , ARN Bicatenario/metabolismo , Alineación de Secuencia , Xenopus laevis/metabolismo
7.
PLoS Comput Biol ; 14(6): e1006152, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29912867

RESUMEN

The mechanistic details underlying the assembly of rod-shaped chromosomes during mitosis and how they segregate from each other to act as individually mobile units remain largely unknown. Here, we construct a coarse-grained physical model of chromosomal DNA and condensins, a class of large protein complexes that plays key roles in these processes. We assume that condensins have two molecular activities: consecutive loop formation in DNA and inter-condensin attractions. Our simulation demonstrates that both of these activities and their balancing acts are essential for the efficient shaping and segregation of mitotic chromosomes. Our results also demonstrate that the shaping and segregation processes are strongly correlated, implying their mechanistic coupling during mitotic chromosome assembly. Our results highlight the functional importance of inter-condensin attractions in chromosome shaping and segregation.


Asunto(s)
Adenosina Trifosfatasas , Segregación Cromosómica/fisiología , Cromosomas , Proteínas de Unión al ADN , Complejos Multiproteicos , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Cromosomas/química , Cromosomas/metabolismo , Cromosomas/ultraestructura , Biología Computacional , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Humanos , Modelos Genéticos , Simulación de Dinámica Molecular , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo
8.
Curr Opin Cell Biol ; 46: 46-53, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28214612

RESUMEN

The assembly of rod-shaped chromosomes during mitosis is an essential prerequisite for faithful segregation of genetic information into daughter cells. Despite the long history of chromosome research, it is only recently that we have acquired powerful approaches and crucial tools that help to unlock the secret of this seemingly complex process. In particular, in vitro assays, mammalian genetics, Hi-C analyses and computer simulations have provided valuable information during the past two years. These studies are now beginning to elucidate how the core components of mitotic chromosomes, namely, histones, topoisomerase IIα and condensins, cooperate with each other to convert very long stretches of DNA into rod-shaped chromosomes.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Cromátides/química , Cromosomas/química , Proteínas de Unión al ADN/metabolismo , Mitosis , Complejos Multiproteicos/metabolismo , Adenosina Trifosfatasas/química , Animales , Cromátides/metabolismo , Cromosomas/metabolismo , ADN/química , ADN/metabolismo , ADN-Topoisomerasas de Tipo II/química , ADN-Topoisomerasas de Tipo II/metabolismo , Proteínas de Unión al ADN/química , Histonas/química , Histonas/metabolismo , Humanos , Complejos Multiproteicos/química , Nucleosomas/química , Nucleosomas/metabolismo
9.
J Cachexia Sarcopenia Muscle ; 6(3): 237-41, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26401470

RESUMEN

BACKGROUND: In Japan, growth hormone releasing peptide-2 (GHRP-2) is clinically used as a diagnostic agent for growth hormone secretion deficiency, but the therapeutic application of GHRP-2 has not been studied in anorexia nervosa. GHRP-2 reportedly exhibits agonistic action for ghrelin receptor and increases food intake. METHODS: We administered GHRP-2 to a patient with a 20-year history of anorexia nervosa to determine whether GHRP-2 treatment increases food intake and body weight. GHRP-2 was administered before every meal by an intranasal approach for 1 year. RESULTS: Although the patient reported a decreased fear of eating and decreased desire to be thin by our previous treatment, she was unable to increase food intake or body weight because of digestive tract dysfunction. Vomiting after meals caused by delayed gastric emptying and incurable constipation were prolonged, and sub-ileus and hypoglycemia were observed. GHRP-2 increased the feeling of hunger and food intake, decreased early satiety and improved hypoglycemia. The patient's body weight gradually increased by 6.7 kg (from 21.1 kg to 27.8 kg) in 14 months after starting GHRP-2 administration. The fatigability and muscle strength improved, and the physical and mental activities were also increased. No obvious side effects were observed after long-term intranasal administration of GHRP-2. CONCLUSIONS: Patients with a long-term history of eating disorder occasionally recover from the psychological problems such as fear for obesity but remain emaciated. We believe that ghrelin agonists such as GHRP-2 may be promising agents for the effective treatments of severe anorexia nervosa in a chronic condition.

10.
Dev Cell ; 33(1): 94-106, 2015 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-25850674

RESUMEN

Condensin I is a five-subunit protein complex that plays a central role in mitotic chromosome assembly and segregation in eukaryotes. To dissect its mechanism of action, we reconstituted wild-type and mutant complexes from recombinant subunits and tested their abilities to assemble chromosomes in Xenopus egg cell-free extracts depleted of endogenous condensins. We find that ATP binding and hydrolysis by SMC subunits have distinct contributions to the action of condensin I and that continuous ATP hydrolysis is required for structural maintenance of chromosomes. Mutant complexes lacking either one of two HEAT subunits produce abnormal chromosomes with highly characteristic defects and have contrasting structural effects on chromosome axes preassembled with the wild-type complex. We propose that balancing acts of the two HEAT subunits support dynamic assembly of chromosome axes under the control of the SMC ATPase cycle, thereby governing construction of rod-shaped chromosomes in eukaryotic cells.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Cromosomas/química , Cromosomas/metabolismo , Proteínas de Unión al ADN/metabolismo , Mitosis/fisiología , Complejos Multiproteicos/metabolismo , Proteínas Nucleares/metabolismo , Xenopus laevis/genética , Adenosina Trifosfatasas/genética , Adenosina Trifosfato/metabolismo , Animales , Sitios de Unión , Segregación Cromosómica , Cromosomas/genética , Proteínas de Unión al ADN/genética , Femenino , Técnica del Anticuerpo Fluorescente , Inmunoprecipitación , Complejos Multiproteicos/genética , Proteínas Nucleares/genética , Subunidades de Proteína , Xenopus laevis/crecimiento & desarrollo , Xenopus laevis/metabolismo
11.
PLoS One ; 3(10): e3338, 2008 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-18833336

RESUMEN

Formation of female gametes requires acentriolar spindle assembly during meiosis. Mitotic spindles organize from centrosomes and via local activation of the RanGTPase on chromosomes. Vertebrate oocytes present a RanGTP gradient centred on chromatin at all stages of meiotic maturation. However, this gradient is dispensable for assembly of the first meiotic spindle. To understand this meiosis I peculiarity, we studied TPX2, a Ran target, in mouse oocytes. Strikingly, TPX2 activity is controlled at the protein level through its accumulation from meiosis I to II. By RNAi depletion and live imaging, we show that TPX2 is required for spindle assembly via two distinct functions. It controls microtubule assembly and spindle pole integrity via the phosphorylation of TACC3, a regulator of MTOCs activity. We show that meiotic spindle formation in vivo depends on the regulation of at least a target of Ran, TPX2, rather than on the regulation of the RanGTP gradient itself.


Asunto(s)
Ciclo Celular , Meiosis , Oocitos/citología , Animales , Secuencia de Bases , Femenino , Técnica del Anticuerpo Fluorescente , Ratones , Oocitos/metabolismo , Fosforilación , Interferencia de ARN , ARN Interferente Pequeño , Huso Acromático
12.
Cell ; 132(1): 79-88, 2008 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-18191222

RESUMEN

Fast growth of microtubules is essential for rapid assembly of the microtubule cytoskeleton during cell proliferation and differentiation. XMAP215 belongs to a conserved family of proteins that promote microtubule growth. To determine how XMAP215 accelerates growth, we developed a single-molecule assay to visualize directly XMAP215-GFP interacting with dynamic microtubules. XMAP215 binds free tubulin in a 1:1 complex that interacts with the microtubule lattice and targets the ends by a diffusion-facilitated mechanism. XMAP215 persists at the plus end for many rounds of tubulin subunit addition in a form of "tip tracking." These results show that XMAP215 is a processive polymerase that directly catalyzes the addition of up to 25 tubulin dimers to the growing plus end. Under some circumstances XMAP215 can also catalyze the reverse reaction, namely microtubule shrinkage. The similarities between XMAP215 and formins, actin polymerases, suggest that processive tip tracking is a common mechanism for stimulating the growth of cytoskeletal polymers.


Asunto(s)
Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Tubulina (Proteína)/metabolismo , Proteínas de Xenopus/metabolismo , Animales , Sitios de Unión/fisiología , Bioensayo/métodos , Dominio Catalítico/fisiología , Diferenciación Celular/fisiología , Aumento de la Célula , Línea Celular , Citoesqueleto/metabolismo , Citoesqueleto/ultraestructura , Difusión , Dimerización , Proteínas Fetales/metabolismo , Forminas , Proteínas Fluorescentes Verdes/metabolismo , Proteínas de Microfilamentos/metabolismo , Microscopía Fluorescente , Proteínas Asociadas a Microtúbulos/genética , Microtúbulos/ultraestructura , Proteínas Nucleares/metabolismo , Polímeros/metabolismo , Unión Proteica/fisiología , Estructura Terciaria de Proteína/fisiología , Transporte de Proteínas/fisiología , Spodoptera , Sus scrofa , Proteínas de Xenopus/genética , Xenopus laevis
13.
Mol Cell Biol ; 27(1): 352-67, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17060449

RESUMEN

NDEL1 is a binding partner of LIS1 that participates in the regulation of cytoplasmic dynein function and microtubule organization during mitotic cell division and neuronal migration. NDEL1 preferentially localizes to the centrosome and is a likely target for cell cycle-activated kinases, including CDK1. In particular, NDEL1 phosphorylation by CDK1 facilitates katanin p60 recruitment to the centrosome and triggers microtubule remodeling. Here, we show that Aurora-A phosphorylates NDEL1 at Ser251 at the beginning of mitotic entry. Interestingly, NDEL1 phosphorylated by Aurora-A was rapidly downregulated thereafter by ubiquitination-mediated protein degradation. In addition, NDEL1 is required for centrosome targeting of TACC3 through the interaction with TACC3. The expression of Aurora-A phosphorylation-mimetic mutants of NDEL1 efficiently rescued the defects of centrosomal maturation and separation which are characteristic of Aurora-A-depleted cells. Our findings suggest that Aurora-A-mediated phosphorylation of NDEL1 is essential for centrosomal separation and centrosomal maturation and for mitotic entry.


Asunto(s)
Proteínas Portadoras/metabolismo , Proteínas Portadoras/fisiología , Centrosoma/metabolismo , Proteínas Fetales/metabolismo , Proteínas Asociadas a Microtúbulos/fisiología , Proteínas Serina-Treonina Quinasas/fisiología , Adenosina Trifosfatasas/metabolismo , Animales , Aurora Quinasa A , Aurora Quinasas , Movimiento Celular , Células HeLa , Humanos , Katanina , Ratones , Ratones Transgénicos , Microtúbulos/metabolismo , Mitosis , Fosforilación , Ubiquitina/metabolismo
14.
Curr Biol ; 16(16): 1627-35, 2006 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-16920624

RESUMEN

Shortened kinetochore microtubules take separated chromatids to the opposing spindle poles in anaphase. Fission yeast Dis1 belongs to the Dis1/XMAP215/TOG family that is required for proper microtubule dynamics. Here, we report that Dis1is regulated by Cdc2 phosphorylation and that this mitotic phosphorylation ensures the fidelity of chromosome segregation. Whereas mutants Dis1(6A) and Dis1(6E) that substitute all of the six Cdc2 sites for Ala or Glu, respectively, produce colonies at 22 degrees C-36 degrees C, Dis1(6A) but not Dis1(6E) loses a minichromosome and reveals aberrant chromosome segregation at significant frequencies. Dis1(WT) is recruited to two regions of the mitotic spindle: kinetochores (possibly also kinetochore microtubules) in metaphase and the pole-to-pole microtubule lattice in anaphase. Mutant Dis1(6E) preferentially binds to metaphase kinetochores, whereas Dis1(6A), which is located along microtubules, fails in its accumulation at kinetochores. Dis1(6A) displays synthetic lethality with the mis12-537, which is a mutant that compromises kinetochore function. Dis1(6E) mimics the Cdc2-phosphorylated form of Dis1(WT), whereas Dis1(6A) can partially rescue the phenotype resulting form deletion of Mtc1/Alp14, another XMAP215-like protein. In anaphase, dephosphorylated Dis1 and Dis1(6A), but not Dis1(6E), move to the spindle microtubule lattice near the SPBs. Cdc2 thus directly phosphorylates Dis1, and this phosphorylation regulates Dis1 localization in both metaphase and anaphase and ensures high-fidelity segregation.


Asunto(s)
Proteína Quinasa CDC2/metabolismo , Segregación Cromosómica/fisiología , Cinetocoros/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Huso Acromático/metabolismo , Microscopía Fluorescente , Proteínas Asociadas a Microtúbulos/genética , Mutación/genética , Fosforilación , Schizosaccharomyces/fisiología , Proteínas de Schizosaccharomyces pombe/genética
17.
J Muscle Res Cell Motil ; 27(2): 107-14, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16450057

RESUMEN

Traditionally, kinesins have been identified as proteins that use the energy of ATP to translocate along microtubules. However, in the last decade some kinesin-like proteins were found to destabilize microtubule ends. The kinesins that destabilize microtubules are known as "catastrophe kinesins". Analyses of a Xenopus member of the catastrophe kinesins called MCAK/XKCM1 have shown that, in fact, catastrophe kinesins are essential for controlling the distribution of microtubules by inducing their depolymerization. Therefore, unraveling the mechanisms of how microtubule destabilization promoted by these catastrophe kinesins is controlled is essential for understanding how microtubules in a cell are distributed. Here we give an overview of the studies that have focused on the global and local control of microtubule destabilization promoted by MCAK/XKCM1.


Asunto(s)
Adenosina Trifosfato/metabolismo , Cinesinas/metabolismo , Microtúbulos/metabolismo , Proteínas de Xenopus/metabolismo , Animales , Humanos , Transporte de Proteínas/fisiología , Xenopus
18.
J Cell Biol ; 170(7): 1039-46, 2005 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-16186253

RESUMEN

Centrosomes are the dominant sites of microtubule (MT) assembly during mitosis in animal cells, but it is unclear how this is achieved. Transforming acidic coiled coil (TACC) proteins stabilize MTs during mitosis by recruiting Minispindles (Msps)/XMAP215 proteins to centrosomes. TACC proteins can be phosphorylated in vitro by Aurora A kinases, but the significance of this remains unclear. We show that Drosophila melanogaster TACC (D-TACC) is phosphorylated on Ser863 exclusively at centrosomes during mitosis in an Aurora A-dependent manner. In embryos expressing only a mutant form of D-TACC that cannot be phosphorylated on Ser863 (GFP-S863L), spindle MTs are partially destabilized, whereas astral MTs are dramatically destabilized. GFP-S863L is concentrated at centrosomes and recruits Msps there but cannot associate with the minus ends of MTs. We propose that the centrosomal phosphorylation of D-TACC on Ser863 allows D-TACC-Msps complexes to stabilize the minus ends of centrosome-associated MTs. This may explain why centrosomes are such dominant sites of MT assembly during mitosis.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , Centrosoma/fisiología , Proteínas de Drosophila/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Microtúbulos/metabolismo , Proteínas Quinasas/fisiología , Proteínas de Xenopus/metabolismo , Proteínas de Xenopus/fisiología , Animales , Aurora Quinasas , Centrosoma/química , Centrosoma/enzimología , Proteínas de Drosophila/análisis , Proteínas de Drosophila/genética , Sustancias Macromoleculares/metabolismo , Proteínas Asociadas a Microtúbulos/análisis , Proteínas Asociadas a Microtúbulos/genética , Mitosis , Mutación , Fosforilación , Proteínas Serina-Treonina Quinasas , Serina/fisiología
19.
J Cell Biol ; 170(7): 1047-55, 2005 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-16172205

RESUMEN

Centrosomes act as sites of microtubule growth, but little is known about how the number and stability of microtubules emanating from a centrosome are controlled during the cell cycle. We studied the role of the TACC3-XMAP215 complex in this process by using purified proteins and Xenopus laevis egg extracts. We show that TACC3 forms a one-to-one complex with and enhances the microtubule-stabilizing activity of XMAP215 in vitro. TACC3 enhances the number of microtubules emanating from mitotic centrosomes, and its targeting to centrosomes is regulated by Aurora A-dependent phosphorylation. We propose that Aurora A regulation of TACC3 activity defines a centrosome-specific mechanism for regulation of microtubule polymerization in mitosis.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , Centrosoma/fisiología , Microtúbulos/metabolismo , Mitosis , Proteínas Quinasas/fisiología , Factores de Transcripción/fisiología , Proteínas de Xenopus/fisiología , Animales , Aurora Quinasas , Extractos Celulares , Cinesinas/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Asociadas a Microtúbulos/fisiología , Microtúbulos/química , Oocitos/química , Fosforilación , Proteínas Serina-Treonina Quinasas , Proteínas de Xenopus/metabolismo , Xenopus laevis
20.
Dev Cell ; 9(2): 237-48, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16054030

RESUMEN

In vertebrates, the microtubule binding protein TPX2 is required for meiotic and mitotic spindle assembly. TPX2 is also known to bind to and activate Aurora A kinase and target it to the spindle. However, the relationship between the TPX2-Aurora A interaction and the role of TPX2 in spindle assembly is unclear. Here, we identify TPXL-1, a C. elegans protein that is the first characterized invertebrate ortholog of TPX2. We demonstrate that an essential role of TPXL-1 during mitosis is to activate and target Aurora A to microtubules. Our data suggest that this targeting stabilizes microtubules connecting kinetochores to the spindle poles. Thus, activation and targeting of Aurora A appears to be an ancient and conserved function of TPX2 that plays a central role in mitotic spindle assembly.


Asunto(s)
Proteínas de Caenorhabditis elegans/fisiología , Caenorhabditis elegans/metabolismo , Proteínas Portadoras/fisiología , Proteínas de Ciclo Celular/metabolismo , Microtúbulos/fisiología , Proteínas Quinasas/metabolismo , Huso Acromático/fisiología , Proteínas de Xenopus/metabolismo , Secuencia de Aminoácidos , Animales , Aurora Quinasas , Caenorhabditis elegans/embriología , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas Portadoras/genética , Proteínas de Ciclo Celular/genética , Embrión no Mamífero/fisiología , Activación Enzimática , Humanos , Cinetocoros/fisiología , Proteínas Asociadas a Microtúbulos/genética , Datos de Secuencia Molecular , Proteínas de Neoplasias/genética , Proteínas Nucleares/genética , Fosfoproteínas/genética , Proteínas Quinasas/genética , Proteínas Serina-Treonina Quinasas , Homología de Secuencia de Aminoácido , Huso Acromático/genética , Proteínas de Xenopus/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...