Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
2.
FEBS Lett ; 595(17): 2208-2220, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34293820

RESUMEN

Previous studies have suggested that phosphorylation of translation elongation factor 1A (eEF1A) can alter its function, and large-scale phospho-proteomic analyses in Saccharomyces cerevisiae have identified 14 eEF1A residues phosphorylated under various conditions. Here, a series of eEF1A mutations at these proposed sites were created and the effects on eEF1A activity were analyzed. The eEF1A-S53D and eEF1A-T430D phosphomimetic mutant strains were inviable, while corresponding alanine mutants survived but displayed defects in growth and protein synthesis. The activity of an eEF1A-S289D mutant was significantly reduced in the absence of the guanine nucleotide exchange factor eEF1Bα and could be restored by an exchange-deficient form of the protein, suggesting that eEF1Bα promotes eEF1A activity by a mechanism other than nucleotide exchange. Our data show that several of the phosphorylation sites identified by high-throughput analysis are critical for eEF1A function.


Asunto(s)
Factor 1 de Elongación Peptídica/genética , Factor 1 de Elongación Peptídica/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Análisis Mutacional de ADN , Fosforilación , Biosíntesis de Proteínas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo
3.
PLoS One ; 13(1): e0190524, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29300771

RESUMEN

In most eukaryotic organisms, translation elongation requires two highly conserved elongation factors eEF1A and eEF2. Fungal systems are unique in requiring a third factor, the eukaryotic Elongation Factor 3 (eEF3). For decades, eEF3, a ribosome-dependent ATPase, was considered "fungal-specific", however, recent bioinformatics analysis indicates it may be more widely distributed among other unicellular eukaryotes. In order to determine whether divergent eEF3-like proteins from other eukaryotic organisms can provide the essential functions of eEF3 in budding yeast, the eEF3-like proteins from Schizosaccharomyes pombe and an oomycete, Phytophthora infestans, were cloned and expressed in Saccharomyces cerevisiae. Plasmid shuffling experiments showed that both S. pombe and P. infestans eEF3 can support the growth of S. cerevisiae in the absence of endogenous budding yeast eEF3. Consistent with its ability to provide the essential functions of eEF3, P. infestans eEF3 possessed ribosome-dependent ATPase activity. Yeast cells expressing P. infestans eEF3 displayed reduced protein synthesis due to defects in translation elongation/termination. Identification of eEF3 in divergent species will advance understanding of its function and the ribosome specific determinants that lead to its requirement as well as contribute to the identification of functional domains of eEF3 for potential drug discovery.


Asunto(s)
Factores de Elongación de Péptidos/metabolismo , Phytophthora infestans/metabolismo , Extensión de la Cadena Peptídica de Translación , Factores de Elongación de Péptidos/clasificación , Filogenia
4.
Trends Biochem Sci ; 42(8): 587-588, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28669455

RESUMEN

Protein synthesis requires factors that are proposed to enhance discrete steps. Eukaryotic initiation factor eIF5A was initially thought to affect initiation; however, it was later shown to facilitate translation elongation at polyproline. Recent work by Schuller et al. demonstrates that eIF5A facilitates both general elongation and termination in yeast, challenging these steps as silos.


Asunto(s)
Factores de Iniciación de Péptidos/genética , Proteínas de Unión al ARN/genética , Biosíntesis de Proteínas , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
5.
Genetics ; 203(1): 65-107, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27183566

RESUMEN

In this review, we provide an overview of protein synthesis in the yeast Saccharomyces cerevisiae The mechanism of protein synthesis is well conserved between yeast and other eukaryotes, and molecular genetic studies in budding yeast have provided critical insights into the fundamental process of translation as well as its regulation. The review focuses on the initiation and elongation phases of protein synthesis with descriptions of the roles of translation initiation and elongation factors that assist the ribosome in binding the messenger RNA (mRNA), selecting the start codon, and synthesizing the polypeptide. We also examine mechanisms of translational control highlighting the mRNA cap-binding proteins and the regulation of GCN4 and CPA1 mRNAs.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Biosíntesis de Proteínas , Proteínas de Saccharomyces cerevisiae/biosíntesis , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Extensión de la Cadena Peptídica de Translación , Terminación de la Cadena Péptídica Traduccional
6.
J Biol Chem ; 289(30): 20928-38, 2014 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-24936063

RESUMEN

Apart from its canonical function in translation elongation, eukaryotic translation elongation factor 1A (eEF1A) has been shown to interact with the actin cytoskeleton. Amino acid substitutions in eEF1A that reduce its ability to bind and bundle actin in vitro cause improper actin organization in vivo and reduce total translation. Initial in vivo analysis indicated the reduced translation was through initiation. The mutant strains exhibit increased levels of phosphorylated initiation factor 2α (eIF2α) dependent on the presence of the general control non-derepressible 2 (Gcn2p) protein kinase. Gcn2p causes downregulation of total protein synthesis at initiation in response to increases in deacylated tRNA levels in the cell. Increased levels of eIF2α phosphorylation are not due to a general reduction in translation elongation as eEF2 and eEF3 mutants do not exhibit this effect. Deletion of GCN2 from the eEF1A actin bundling mutant strains revealed a second defect in translation. The eEF1A actin-bundling proteins exhibit changes in their elongation activity at the level of aminoacyl-tRNA binding in vitro. These findings implicate eEF1A in a feedback mechanism for regulating translation at initiation.


Asunto(s)
Actinas/metabolismo , Factor 2 Eucariótico de Iniciación/metabolismo , Mutación , Extensión de la Cadena Peptídica de Translación/fisiología , Factor 1 de Elongación Peptídica/metabolismo , ARN de Hongos/metabolismo , Aminoacil-ARN de Transferencia/metabolismo , Saccharomyces cerevisiae/metabolismo , Actinas/genética , Factor 2 Eucariótico de Iniciación/genética , Factor 1 de Elongación Peptídica/genética , Fosforilación/fisiología , Unión Proteica/fisiología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , ARN de Hongos/genética , Aminoacil-ARN de Transferencia/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
7.
Methods Enzymol ; 536: 55-64, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24423266

RESUMEN

The purpose of this assay is to measure the incorporation of radiolabeled [(35)S]-methionine into newly synthesized proteins in exponentially growing yeast cells. This allows for a quantitative in vivo measurement of total protein synthesis.


Asunto(s)
Metionina/metabolismo , Precipitación Química , Medios de Cultivo , Proteínas Fúngicas/aislamiento & purificación , Proteínas Fúngicas/metabolismo , Marcaje Isotópico , Radioisótopos de Azufre/metabolismo , Levaduras/metabolismo
8.
J Biol Chem ; 289(8): 4853-60, 2014 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-24379402

RESUMEN

Translation elongation is mediated by ribosomes and multiple soluble factors, many of which are conserved across bacteria and eukaryotes. During elongation, eukaryotic elongation factor 1A (eEF1A; EF-Tu in bacteria) delivers aminoacylated-tRNA to the A-site of the ribosome, whereas eEF2 (EF-G in bacteria) translocates the ribosome along the mRNA. Fungal translation elongation is striking in its absolute requirement for a third factor, the ATPase eEF3. eEF3 binds close to the E-site of the ribosome and has been proposed to facilitate the removal of deacylated tRNA from the E-site. eEF3 has two ATP binding cassette (ABC) domains, the second of which carries a unique chromodomain-like insertion hypothesized to play a significant role in its binding to the ribosome. This model was tested in the current study using a mutational analysis of the Sac7d region of the chromodomain-like insertion. Specific mutations in this domain result in reduced growth rate as well as slower translation elongation. In vitro analysis demonstrates that these mutations do not affect the ability of eEF3 to interact with the ribosome. Kinetic analysis revealed a larger turnover number for ribosomes in comparison to eEF3, indicating that the partial reactions involving the ribosome are significantly faster than that of eEF3. Mutations in the chromodomain-like insertion severely compromise the ribosome stimulated ATPase of eEF3, strongly suggesting that it exerts an allosteric effect on the hydrolytic activity of eEF3. The chromodomain-like insertion is, therefore, vital to eEF3 function and may be targeted for developing novel antifungal drugs.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Mutagénesis Insercional , Mutación/genética , Factores de Elongación de Péptidos/química , Factores de Elongación de Péptidos/genética , Biosíntesis de Proteínas , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Cinética , Proteínas Mutantes/metabolismo , Paromomicina/farmacología , Estructura Terciaria de Proteína , Ribosomas/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/crecimiento & desarrollo , Homología de Secuencia de Aminoácido
9.
Virology ; 448: 43-54, 2014 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-24314635

RESUMEN

Replication of tombusviruses and other plus-strand RNA viruses depends on several host factors that are recruited into viral replicase complexes. Previous studies have shown that eukaryotic translation elongation factor 1A (eEF1A) is one of the resident host proteins in the highly purified tombusvirus replicase complex. In this paper, we show that methylation of eEF1A by the METTL10-like See1p methyltransferase is required for tombusvirus and unrelated nodavirus RNA replication in yeast model host. Similar to the effect of SEE1 deletion, yeast expressing only a mutant form of eEF1A lacking the 4 known lysines subjected to methylation supported reduced TBSV accumulation. We show that the half-life of several viral replication proteins is decreased in see1Δ yeast or when a mutated eEF1A was expressed as a sole source for eEF1A. Silencing of the plant ortholog of See1 methyltransferase also decreased tombusvirus RNA accumulation in Nicotiana benthamiana.


Asunto(s)
Metiltransferasas/metabolismo , Nicotiana/enzimología , Factor 1 de Elongación Peptídica/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Tombusvirus/fisiología , Replicación Viral , Interacciones Huésped-Patógeno , Metilación , Metiltransferasas/genética , Factor 1 de Elongación Peptídica/genética , Proteínas de Plantas/genética , Unión Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/virología , Proteínas de Saccharomyces cerevisiae/genética , Nicotiana/metabolismo , Nicotiana/virología , Tombusvirus/genética , Proteínas Virales/genética , Proteínas Virales/metabolismo
10.
J Biol Chem ; 288(34): 24647-55, 2013 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-23853096

RESUMEN

Eukaryotic translation elongation factor 2 (eEF2) facilitates the movement of the peptidyl tRNA-mRNA complex from the A site of the ribosome to the P site during protein synthesis. ADP-ribosylation (ADP(R)) of eEF2 by bacterial toxins on a unique diphthamide residue inhibits its translocation activity, but the mechanism is unclear. We have employed a hormone-inducible diphtheria toxin (DT) expression system in Saccharomyces cerevisiae which allows for the rapid induction of ADP(R)-eEF2 to examine the effects of DT in vivo. ADP(R) of eEF2 resulted in a decrease in total protein synthesis consistent with a defect in translation elongation. Association of eEF2 with polyribosomes, however, was unchanged upon expression of DT. Upon prolonged exposure to DT, cells with an abnormal morphology and increased DNA content accumulated. This observation was specific to DT expression and was not observed when translation elongation was inhibited by other methods. Examination of these cells by electron microscopy indicated a defect in cell separation following mitosis. These results suggest that expression of proteins late in the cell cycle is particularly sensitive to inhibition by ADP(R)-eEF2.


Asunto(s)
Ciclo Celular , Toxina Diftérica/biosíntesis , Factor 2 Eucariótico de Iniciación/metabolismo , Expresión Génica , Biosíntesis de Proteínas , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Adenosina Difosfato/genética , Adenosina Difosfato/metabolismo , ADN de Hongos/genética , ADN de Hongos/metabolismo , Toxina Diftérica/genética , Factor 2 Eucariótico de Iniciación/genética , Polirribosomas/genética , Polirribosomas/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
11.
Wiley Interdiscip Rev RNA ; 3(4): 543-55, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22555874

RESUMEN

The vast majority of proteins are believed to have one specific function. Throughout the course of evolution, however, some proteins have acquired additional functions to meet the demands of a complex cellular milieu. In some cases, changes in RNA or protein processing allow the cell to make the most of what is already encoded in the genome to produce slightly different forms. The eukaryotic elongation factor 1 (eEF1) complex subunits, however, have acquired such moonlighting functions without alternative forms. In this article, we discuss the canonical functions of the components of the eEF1 complex in translation elongation as well as the secondary interactions they have with other cellular factors outside of the translational apparatus. The eEF1 complex itself changes in composition as the complexity of eukaryotic organisms increases. Members of the complex are also subject to phosphorylation, a potential modulator of both canonical and non-canonical functions. Although alternative functions of the eEF1A subunit have been widely reported, recent studies are shedding light on additional functions of the eEF1B subunits. A thorough understanding of these alternate functions of eEF1 is essential for appreciating their biological relevance.


Asunto(s)
Factor 1 de Elongación Peptídica/fisiología , Transporte Activo de Núcleo Celular , Animales , Apoptosis , Núcleo Celular/metabolismo , Humanos , Biosíntesis de Proteínas , Subunidades de Proteína/fisiología , Proteolisis , Virus ARN/fisiología , Replicación Viral
12.
PLoS Pathog ; 7(12): e1002438, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22194687

RESUMEN

Host factors are recruited into viral replicase complexes to aid replication of plus-strand RNA viruses. In this paper, we show that deletion of eukaryotic translation elongation factor 1Bgamma (eEF1Bγ) reduces Tomato bushy stunt virus (TBSV) replication in yeast host. Also, knock down of eEF1Bγ level in plant host decreases TBSV accumulation. eEF1Bγ binds to the viral RNA and is one of the resident host proteins in the tombusvirus replicase complex. Additional in vitro assays with whole cell extracts prepared from yeast strains lacking eEF1Bγ demonstrated its role in minus-strand synthesis by opening of the structured 3' end of the viral RNA and reducing the possibility of re-utilization of (+)-strand templates for repeated (-)-strand synthesis within the replicase. We also show that eEF1Bγ plays a synergistic role with eukaryotic translation elongation factor 1A in tombusvirus replication, possibly via stimulation of the proper positioning of the viral RNA-dependent RNA polymerase over the promoter region in the viral RNA template.These roles for translation factors during TBSV replication are separate from their canonical roles in host and viral protein translation.


Asunto(s)
Factor 1 de Elongación Peptídica/metabolismo , ARN Viral/biosíntesis , ARN Polimerasa Dependiente del ARN/metabolismo , Tombusvirus/metabolismo , Técnicas de Silenciamiento del Gen , Mutagénesis/genética , Mutación/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/virología , Proteínas de Saccharomyces cerevisiae/metabolismo , Tombusvirus/genética , Replicación Viral/fisiología
13.
J Biol Chem ; 286(42): 36568-79, 2011 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-21849502

RESUMEN

The eukaryotic elongation factor 1A (eEF1A) delivers aminoacyl-tRNAs to the ribosomal A-site during protein synthesis. To ensure a continuous supply of amino acids, cells harbor the kinase Gcn2 and its effector protein Gcn1. The ultimate signal for amino acid shortage is uncharged tRNAs. We have proposed a model for sensing starvation, in which Gcn1 and Gcn2 are tethered to the ribosome, and Gcn1 is directly involved in delivering uncharged tRNAs from the A-site to Gcn2 for its subsequent activation. Gcn1 and Gcn2 are large proteins, and these proteins as well as eEF1A access the A-site, leading us to investigate whether there is a functional or physical link between these proteins. Using Saccharomyces cerevisiae cells expressing His(6)-eEF1A and affinity purification, we found that eEF1A co-eluted with Gcn2. Furthermore, Gcn2 co-immunoprecipitated with eEF1A, suggesting that they reside in the same complex. The purified GST-tagged Gcn2 C-terminal domain (CTD) was sufficient for precipitating eEF1A from whole cell extracts generated from gcn2Δ cells, independently of ribosomes. Purified GST-Gcn2-CTD and purified His(6)-eEF1A interacted with each other, and this was largely independent of the Lys residues in Gcn2-CTD known to be required for tRNA binding and ribosome association. Interestingly, Gcn2-eEF1A interaction was diminished in amino acid-starved cells and by uncharged tRNAs in vitro, suggesting that eEF1A functions as a Gcn2 inhibitor. Consistent with this possibility, purified eEF1A reduced the ability of Gcn2 to phosphorylate its substrate, eIF2α, but did not diminish Gcn2 autophosphorylation. These findings implicate eEF1A in the intricate regulation of Gcn2 and amino acid homeostasis.


Asunto(s)
Factor 1 de Elongación Peptídica/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Factor 2 Eucariótico de Iniciación/química , Factor 2 Eucariótico de Iniciación/genética , Factor 2 Eucariótico de Iniciación/aislamiento & purificación , Factor 2 Eucariótico de Iniciación/metabolismo , Homeostasis/fisiología , Factor 1 de Elongación Peptídica/química , Factor 1 de Elongación Peptídica/genética , Factor 1 de Elongación Peptídica/aislamiento & purificación , Fosforilación/fisiología , Unión Proteica , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/aislamiento & purificación , Estructura Terciaria de Proteína , ARN de Hongos/química , ARN de Hongos/genética , ARN de Hongos/metabolismo , ARN de Transferencia/química , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/aislamiento & purificación
14.
PLoS Pathog ; 6(11): e1001175, 2010 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-21079685

RESUMEN

Replication of plus-strand RNA viruses depends on host factors that are recruited into viral replicase complexes. Previous studies showed that eukaryotic translation elongation factor (eEF1A) is one of the resident host proteins in the highly purified tombusvirus replicase complex. Using a random library of eEF1A mutants, we identified one mutant that decreased and three mutants that increased Tomato bushy stunt virus (TBSV) replication in a yeast model host. Additional in vitro assays with whole cell extracts prepared from yeast strains expressing the eEF1A mutants demonstrated several functions for eEF1A in TBSV replication: facilitating the recruitment of the viral RNA template into the replicase complex; the assembly of the viral replicase complex; and enhancement of the minus-strand synthesis by promoting the initiation step. These roles for eEF1A are separate from its canonical role in host and viral protein translation, emphasizing critical functions for this abundant cellular protein during TBSV replication.


Asunto(s)
Factor 1 Eucariótico de Iniciación/metabolismo , ARN Viral/biosíntesis , ARN Polimerasa Dependiente del ARN/metabolismo , Saccharomyces cerevisiae/virología , Tombusvirus/patogenicidad , Replicación Viral , Ensayo de Cambio de Movilidad Electroforética , Factor 1 Eucariótico de Iniciación/antagonistas & inhibidores , Factor 1 Eucariótico de Iniciación/genética , Mutagénesis , Mutación/genética , Conformación Proteica , ARN Viral/química , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética
15.
J Biol Chem ; 285(49): 37995-8004, 2010 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-20926387

RESUMEN

The turnover of damaged proteins is critical to cell survival during stressful conditions such as heat shock or oxidative stress. The accumulation of misfolded proteins in the endoplasmic reticulum (ER) is toxic to cells. Therefore these proteins must be efficiently exported from the ER and degraded by the proteasome or the vacuole. Previously it was shown that the loss of eukaryotic elongation factor 1Bγ (eEF1Bγ) from the yeast Saccharomyces cerevisiae results in resistance to oxidative stress. Strains lacking eEF1Bγ show severe defects in protein turnover during conditions of oxidative stress. Furthermore, these strains accumulate a greater amount of oxidized proteins, which correlates with changes in heat shock chaperones. These strains show severe defects in vacuole morphology and defects related to the maturation of carboxypeptidase Y that is not dependent on the catalytic subunit of the eEF1B complex as a guanine nucleotide exchange factor. Finally, eEF1Bγ co-immunoprecipitates with an essential component of ER-Golgi transport vesicles. Taken together, these results support a broader protein metabolism role for eEF1Bγ.


Asunto(s)
Factor 1 de Elongación Peptídica/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Oxidación-Reducción , Estrés Oxidativo/fisiología , Factor 1 de Elongación Peptídica/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
16.
FASEB J ; 24(11): 4575-84, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20643906

RESUMEN

Melanomas display poor response rates to adjuvant therapies because of their intrinsic resistance to proapoptotic stimuli. This study indicates that such resistance can be overcome, at least partly, through the targeting of eEF1A elongation factor with narciclasine, an Amaryllidaceae isocarbostyril controlling plant growth. Narciclasine displays IC(50) growth inhibitory values between 30-100 nM in melanoma cell lines, irrespective of their levels of resistance to proapoptotic stimuli. Normal noncancerous cell lines are much less affected. At nontoxic doses, narciclasine also significantly improves (P=0.004) the survival of mice bearing metastatic apoptosis-resistant melanoma xenografts in their brain. The eEF1A targeting with narciclasine (50 nM) leads to 1) marked actin cytoskeleton disorganization, resulting in cytokinesis impairment, and 2) protein synthesis impairment (elongation and initiation steps), whereas apoptosis is induced at higher doses only (≥200 nM). In addition to molecular docking validation and identification of potential binding sites, we biochemically confirmed that narciclasine directly binds to human recombinant and yeast-purified eEF1A in a nanomolar range, but not to actin or elongation factor 2, and that 5 nM narciclasine is sufficient to impair eEF1A-related actin bundling activity. eEF1A is thus a potential target to combat melanomas regardless of their apoptosis-sensitivity, and this finding reconciles the pleiotropic cytostatic of narciclasine. -


Asunto(s)
Alcaloides de Amaryllidaceae/farmacología , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Sistemas de Liberación de Medicamentos , Liliaceae/química , Melanoma , Factor 1 de Elongación Peptídica/metabolismo , Fenantridinas/farmacología , Animales , Sitios de Unión , Línea Celular Tumoral , Citoesqueleto/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Hidroxiquinolinas/farmacología , Ratones , Modelos Moleculares , Quinolonas/farmacología , Saccharomyces cerevisiae/metabolismo
17.
J Biol Chem ; 285(28): 21209-13, 2010 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-20444696

RESUMEN

Eukaryotic translation elongation factor 1A (eEF1A) is one of the most abundant protein synthesis factors. eEF1A is responsible for the delivery of all aminoacyl-tRNAs to the ribosome, aside from initiator and selenocysteine tRNAs. In addition to its roles in polypeptide chain elongation, unique cellular and viral activities have been attributed to eEF1A in eukaryotes from yeast to plants and mammals. From preliminary, speculative associations to well characterized biochemical and biological interactions, it is clear that eEF1A, of all the translation factors, has been ascribed the most functions outside of protein synthesis. A mechanistic understanding of these non-canonical functions of eEF1A will shed light on many important biological questions, including viral-host interaction, subcellular organization, and the integration of key cellular pathways.


Asunto(s)
Factor 1 Eucariótico de Iniciación/química , Biosíntesis de Proteínas , ARN de Transferencia/química , Ribosomas/metabolismo , Saccharomyces cerevisiae/metabolismo , Selenocisteína/química , Actinas/química , Transporte Activo de Núcleo Celular , Apoptosis , Citoesqueleto/metabolismo , Factor 1 Eucariótico de Iniciación/metabolismo , Humanos , Factores de Elongación de Péptidos , Conformación Proteica , Virus ARN/metabolismo
18.
Genetics ; 184(1): 141-54, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19841092

RESUMEN

Drosophila translational elongation factor-1gamma (EF1gamma) interacts in the yeast two-hybrid system with DOA, the LAMMER protein kinase of Drosophila. Analysis of mutant EF1gamma alleles reveals that the locus encodes a structurally conserved protein essential for both organismal and cellular survival. Although no genetic interactions were detected in combinations with mutations in EF1alpha, an EF1gamma allele enhanced mutant phenotypes of Doa alleles. A predicted LAMMER kinase phosphorylation site conserved near the C terminus of all EF1gamma orthologs is a phosphorylation site in vitro for both Drosophila DOA and tobacco PK12 LAMMER kinases. EF1gamma protein derived from Doa mutant flies migrates with altered mobility on SDS gels, consistent with it being an in vivo substrate of DOA kinase. However, the aberrant mobility appears to be due to a secondary protein modification, since the mobility of EF1gamma protein obtained from wild-type Drosophila is unaltered following treatment with several nonspecific phosphatases. Expression of a construct expressing a serine-to-alanine substitution in the LAMMER kinase phosphorylation site into the fly germline rescued null EF1gamma alleles but at reduced efficiency compared to a wild-type construct. Our data suggest that EF1gamma functions in vital cellular processes in addition to translational elongation and is a LAMMER kinase substrate in vivo.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/metabolismo , Factor 1 de Elongación Peptídica/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Supervivencia Celular , Secuencia Conservada , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/embriología , Drosophila melanogaster/genética , Femenino , Regulación del Desarrollo de la Expresión Génica , Genes Letales/genética , Humanos , Larva/crecimiento & desarrollo , Masculino , Movimiento , Factor 1 de Elongación Peptídica/química , Factor 1 de Elongación Peptídica/genética , Fosforilación , Proteínas Quinasas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Alineación de Secuencia , Factores de Transcripción/metabolismo , Transcripción Genética , Transgenes/genética
19.
Structure ; 17(12): 1547-1548, 2009 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-20004156

RESUMEN

In this issue of Structure, Taylor et al. (2009) present the most complete model of an eukaryotic ribosome to date. This achievement represents a critical milestone along the path to structurally defining the unique aspects of the eukaryotic protein synthetic machinery.


Asunto(s)
Ribosomas/metabolismo , Microscopía por Crioelectrón , Humanos , Modelos Biológicos , Ribosomas/química , Ribosomas/ultraestructura
20.
Virology ; 385(1): 245-60, 2009 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-19131084

RESUMEN

Host RNA-binding proteins are likely to play multiple, integral roles during replication of plus-strand RNA viruses. To identify host proteins that bind to viral RNAs, we took a global approach based on the yeast proteome microarray, which contains 4080 purified yeast proteins. The biotin-labeled RNA probes included two distantly related RNA viruses, namely Tomato bushy stunt virus (TBSV) and Brome mosaic virus (BMV). Altogether, we have identified 57 yeast proteins that bound to TBSV RNA and/or BMV RNA. Among the identified host proteins, eleven bound to TBSV RNA and seven bound to BMV RNA with high selectivity, whereas the remaining 39 host proteins bound to both viral RNAs. The interaction between the TBSV replicon RNA and five of the identified host proteins was confirmed via gel-mobility shift and co-purification experiments from yeast. Over-expression of the host proteins in yeast, a model host for TBSV, revealed 4 host proteins that enhanced TBSV replication as well as 14 proteins that inhibited replication. Detailed analysis of one of the identified yeast proteins binding to TBSV RNA, namely translation elongation factor eEF1A, revealed that it is present in the highly purified tombusvirus replicase complex. We also demonstrate binding of eEF1A to the p33 replication protein and a known cis-acting element at the 3' end of TBSV RNA. Using a functional mutant of eEF1A, we provide evidence on the involvement of eEF1A in TBSV replication.


Asunto(s)
Factor 1 de Elongación Peptídica/metabolismo , ARN Polimerasa Dependiente del ARN/metabolismo , Tombusvirus/fisiología , Complejos de Ubiquitina-Proteína Ligasa/metabolismo , Proteínas Virales/metabolismo , Levaduras/virología , Regiones no Traducidas 3' , Bromovirus/genética , Bromovirus/fisiología , Expresión Génica , Mutación , Factor 1 de Elongación Peptídica/genética , ARN Viral/genética , ARN Viral/metabolismo , ARN Polimerasa Dependiente del ARN/genética , Elementos Silenciadores Transcripcionales , Tombusvirus/genética , Ubiquitinación , Replicación Viral/fisiología , Levaduras/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...