Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Front Genet ; 14: 1266402, 2023.
Article En | MEDLINE | ID: mdl-37964777

Low soil nitrogen levels, compounded by the high costs associated with nitrogen supplementation through fertilizers, significantly contribute to food insecurity, malnutrition, and rural poverty in maize-dependent smallholder communities of sub-Saharan Africa (SSA). The discovery of genomic regions associated with low nitrogen tolerance in maize can enhance selection efficiency and facilitate the development of improved varieties. To elucidate the genetic architecture of grain yield (GY) and its associated traits (anthesis-silking interval (ASI), anthesis date (AD), plant height (PH), ear position (EPO), and ear height (EH)) under different soil nitrogen regimes, four F3 maize populations were evaluated in Kenya and Zimbabwe. GY and all the traits evaluated showed significant genotypic variance and moderate heritability under both optimum and low nitrogen stress conditions. A total of 91 quantitative trait loci (QTL) related to GY (11) and other secondary traits (AD (26), PH (19), EH (24), EPO (7) and ASI (4)) were detected. Under low soil nitrogen conditions, PH and ASI had the highest number of QTLs. Furthermore, some common QTLs were identified between secondary traits under both nitrogen regimes. These QTLs are of significant value for further validation and possible rapid introgression into maize populations using marker-assisted selection. Identification of many QTL with minor effects indicates genomic selection (GS) is more appropriate for their improvement. Genomic prediction within each population revealed low to moderately high accuracy under optimum and low soil N stress management. However, the accuracies were higher for GY, PH and EH under optimum compared to low soil N stress. Our findings indicate that genetic gain can be improved in maize breeding for low N stress tolerance by using GS.

2.
J Crop Improv ; 34(1): 84-102, 2020.
Article En | MEDLINE | ID: mdl-32742239

In Sub-Saharan Africa, sweetpotato pre-basic seed is multiplied in screenhouses using a sterilized soil substrate. This is expensive and unsustainable. The use of sand substrate with a fertigation system ("sandponics"), is an alternative. The study compared the cost-effectiveness for pre-basic seed production using the sandponics system to the conventional soil substrate for four genotypes. A randomized complete block split plot design was used, and data collected on vine traits over six harvests. Real-time cost data were collected for cost-effectiveness analysis. Results showed a highly significant (p < .0001) 21.8% increase in the vine multiplication rate under the sandponics system. The cost of producing one sweetpotato node in sandponics was significantly lower by 0.009 US$. The cost-effectiveness of producing pre-basic seed in sandponics varied among the genotypes. The future use of sandponics is discussed with respect to the availability of soluble inorganic fertilizers, varietal specific response to nutrients, and labor implications.

3.
Gates Open Res ; 2: 59, 2018.
Article En | MEDLINE | ID: mdl-31363713

Background: Sweetpotato, being a vegetatively propagated crop is prone to seed degeneration, and a continuous source for high quality sweetpotato seed is critical for an efficient seed system.  In most Sub-Saharan African countries, the National Agricultural Research Systems use tissue culture to produce limited quantity of pre-basic sweetpotato seed which is then used as starting material to maintain and produce basic seed in mini-screen houses, net tunnels or open field multiplication in low-virus pressure areas by either the private seed companies or vine multipliers. Soil is the predominant media for pre-basic seed multiplication. Multiplying pre-basic sweetpotato seed in sand with fertigation, also known as 'sandponics' is a possible opportunity towards sustainable production of pre-basic sweetpotato seed. It would be beneficial to examine the feasibility and the potential to replace soil system with 'sandponics' for growing pre-basic sweetpotato seed. Methods: Pot experiments were conducted to study how sweetpotato vine propagation is affected by sequentially omitting nitrogen, phosphorus, calcium, sulfur and boron from fertilizer applications on cv. Kabode. The experiment was laid in a randomized complete block design with five levels of the factor fertilizer, replicated four times with two blocks. The effect of fertilization of nitrogen at (0, 100, 150, 200 & 250), phosphorus at (0, 30, 60, 90 & 120), calcium at (0, 100, 200, 300 & 400), sulfur at (0, 30, 60, 90 & 120) and boron at (0, 0.1, 0.2, 0.3 & 0.4) ppm on sweetpotato vegetative growth parameters was measured 45 days after planting. Results: The obtained results showed that application of 200, 60, 200, 120 and 0.3 ppm of N, P, Ca, S and B respectively recorded the highest values in sweetpotato vegetative growth parameters.   Conclusions: These results imply that pre-basic sweetpotato vine yields in sandponics could be increased by using this optimized media.

...