Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 146
Filtrar
1.
bioRxiv ; 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38915644

RESUMEN

The kidney filters nutrient waste and bodily fluids from the bloodstream, in addition to secondary functions of metabolism and hormone secretion, requiring an astonishing amount of energy to maintain its functions. In kidney cells, mitochondria produce adenosine triphosphate (ATP) and help maintain kidney function. Due to aging, the efficiency of kidney functions begins to decrease. Dysfunction in mitochondria and cristae, the inner folds of mitochondria, is a hallmark of aging. Therefore, age-related kidney function decline could be due to changes in mitochondrial ultrastructure, increased reactive oxygen species (ROS), and subsequent alterations in metabolism and lipid composition. We sought to understand if there is altered mitochondrial ultrastructure, as marked by 3D morphological changes, across time in tubular kidney cells. Serial block facing-scanning electron microscope (SBF-SEM) and manual segmentation using the Amira software were used to visualize murine kidney samples during the aging process at 3 months (young) and 2 years (old). We found that 2-year mitochondria are more fragmented, compared to the 3-month, with many uniquely shaped mitochondria observed across aging, concomitant with shifts in ROS, metabolomics, and lipid homeostasis. Furthermore, we show that the mitochondrial contact site and cristae organizing system (MICOS) complex is impaired in the kidney due to aging. Disruption of the MICOS complex shows altered mitochondrial calcium uptake and calcium retention capacity, as well as generation of oxidative stress. We found significant, detrimental structural changes to aged kidney tubule mitochondria suggesting a potential mechanism underlying why kidney diseases occur more readily with age. We hypothesize that disruption in the MICOS complex further exacerbates mitochondrial dysfunction, creating a vicious cycle of mitochondrial degradation and oxidative stress, thus impacting kidney health. Translational Statement: Due to aging, the efficiency of kidney functions begins to decrease and the risk of kidney diseases may increase, but specific regulators of mitochondrial age-related changes are poorly explained. This study demonstrates the MICOS complex may be a target for mitigating age-related changes in mitochondria. The MICOS complex can be associated with oxidative stress and calcium dysregulation, which also arise in many kidney pathologies.

2.
bioRxiv ; 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38826465

RESUMEN

The physical characteristics of brown adipose tissue (BAT) are defined by the presence of multilocular lipid droplets (LD) within the brown adipocytes and a high abundance of iron-containing mitochondria, which give it its characteristic color. Normal mitochondrial function is, in part, regulated by organelle-to-organelle contacts. Particularly, the contact sites that mediate mitochondria-LD interactions are thought to have various physiological roles, such as the synthesis and metabolism of lipids. Aging is associated with mitochondrial dysfunction, and previous studies show that there are changes in mitochondrial structure and proteins that modulate organelle contact sites. However, how mitochondria-LD interactions change with aging has yet to be fully clarified. Therefore, we sought to define age-related changes in LD morphology and mitochondria-lipid interactions in BAT. We examined the three-dimensional morphology of mitochondria and LDs in young (3-month) and aged (2-year) murine BAT using serial block face-scanning electron microscopy and the Amira program for segmentation, analysis, and quantification. Analysis showed reductions in LD volume, area, and perimeter in aged samples compared to young samples. Additionally, we observed changes in LD appearance and type in aged samples compared to young samples. Notably, we found differences in mitochondrial interactions with LDs, which could implicate that these contacts may be important for energetics in aging. Upon further investigation, we also found changes in mitochondrial and cristae structure for mitochondria interacting with LD lipids. Overall, these data define the nature of LD morphology and organelle-organelle contacts during aging and provide insight into LD contact site changes that interconnect biogerontology and mitochondrial functionality, metabolism, and bioactivity in aged BAT.

3.
bioRxiv ; 2024 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-38895458

RESUMEN

Background: Breast cancer is the most common malignant tumor in women worldwide, and disproportionately affects Sub-Saharan Africa compared to high income countries. The global disease burden is growing, with Sub-Saharan Africa reporting majority of the cases. In Kenya, breast cancer is the most commonly diagnosed cancer, with an annual incidence of 7,243 new cases in 2022, representing 25.5% of all reported cancers in women. Evidence suggests that women receiving breast cancer treatment are at a greater risk of developing hypertension than women without breast cancer. Hypertension prevalence has been on the rise in SSA, with poor detection, treatment and control. The JAK-STAT signaling is activated in hormone receptor-positive breast tumors, leading to inflammation, cell proliferation, and treatment resistance in cancer cells. We sought to understand the association between the expression of JAK-STAT Pathway genes and hypertension among Kenyan women diagnosed with breast cancer. Methods: Breast tumor and non-tumor tissues were acquired from patients with a pathologic diagnosis of invasive breast carcinoma. RNA was extracted from fresh frozen tumor and adjacent normal tissue samples of 23 participants who had at least 50% tumor after pathological examination, as well as their corresponding adjacent normal samples. Differentially expressed JAK-STAT genes between tumor and normal breast tissues were assessed using the DESEq2 R package. Pearson correlation was used to assess the correlation between differentially expressed JAK-STAT genes and participants' blood pressure, heart rate, and body mass index (BMI). Results: 11,868 genes were differentially expressed between breast tumor and non-tumor tissues. Eight JAK-STAT genes were significantly dysregulated (Log2FC ≥ 1.0 and an Padj ≤ 0.05), with two genes (CISH and SCNN1A) being upregulated. Six genes (TGFBR2, STAT5A, STAT5B, TGFRB3, SMAD9, and SOCS2) were downregulated. We identified STAT5A and SOCS2 genes to be significantly correlated with elevated systolic pressure and heart rate, respectively. Conclusions: Our study provides insights underlying the molecular mechanisms of hypertension among Kenyan women diagnosed with breast cancer. Understanding these mechanisms may help develop targeted treatments that may improve health outcomes of Kenyan women diagnosed with breast cancer. Longitudinal studies with larger cohorts will be needed to validate our results.

4.
Physiol Rep ; 12(11): e16048, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38872467

RESUMEN

Studying acute changes in vascular endothelial cells in humans is challenging. We studied ten African American women and used the J-wire technique to isolate vein endothelial cells before and after a four-hour lipid and heparin infusion. Dynamic changes in lipid-induced oxidative stress and inflammatory markers were measured with fluorescence-activated cell sorting. We used the surface markers CD31 and CD144 to identify human endothelial cells. Peripheral blood mononuclear cells isolated from blood were used as a negative control. The participants received galantamine (16 mg/day) for 3 months. We previously demonstrated that galantamine treatment effectively suppresses lipid-induced oxidative stress and inflammation. In this study, we infused lipids to evaluate its potential to increase the activation of endothelial cells, as assessed by the levels of CD54+ endothelial cells and expression of Growth arrest-specific 6 compared to the baseline sample. Further, we aimed to investigate whether lipid infusion led to increased expression of the oxidative stress markers IsoLGs and nitrotyrosine in endothelial cells. This approach will expedite the in vivo identification of novel pathways linked with endothelial cell dysfunction induced by oxidative stress and inflammatory cytokines. This study describes an innovative method to harvest and study human endothelial cells and demonstrates the dynamic changes in oxidative stress and inflammatory markers release induced by lipid infusion.


Asunto(s)
Células Endoteliales , Inflamación , Estrés Oxidativo , Humanos , Estrés Oxidativo/efectos de los fármacos , Femenino , Inflamación/metabolismo , Células Endoteliales/metabolismo , Células Endoteliales/efectos de los fármacos , Adulto , Galantamina/farmacología , Molécula-1 de Adhesión Celular Endotelial de Plaqueta/metabolismo , Antígenos CD/metabolismo , Cadherinas/metabolismo , Tirosina/metabolismo , Tirosina/análogos & derivados , Tirosina/farmacología , Persona de Mediana Edad , Molécula 1 de Adhesión Intercelular/metabolismo , Lípidos/farmacología
5.
bioRxiv ; 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38915603

RESUMEN

BACKGROUND: Salt sensitivity of blood pressure (SSBP) is an independent risk factor for cardiovascular morbidity and mortality, yet the etiology is poorly understood. We previously found that serum/glucocorticoid-regulated kinase 1 (SGK1) and epoxyeicosatrienoic acids (EETs) regulate epithelial sodium channel (ENaC)-dependent sodium entry into monocyte-derived antigen-presenting cells (APCs) and activation of NADPH oxidase, leading to the formation of isolevuglandins (IsoLGs) in SSBP. Whereas aldosterone via the mineralocorticoid receptor (MR) activates SGK1 leading to hypertension, our past findings indicate that levels of plasma aldosterone do not correlate with SSBP, and there is little to no MR expression in APCs. Thus, we hypothesized that cortisol acting via the glucocorticoid receptor (GR), not the MR in APCs mediates SGK1 actions to induce SSBP. METHODS: We performed cellular indexing of transcriptomes and epitopes by sequencing (CITE-Seq) analysis on peripheral blood mononuclear cells of humans rigorously phenotyped for SSBP using an inpatient salt loading/depletion protocol to determine expression of MR, GR, and SGK1 in immune cells. In additional experiments, we performed bulk transcriptomic analysis on isolated human monocytes following in vitro treatment with high salt from a separate cohort. We then measured urine and plasma cortisol, cortisone, renin, and aldosterone. Subsequently, we measured the association of these hormones with changes in systolic, diastolic, mean arterial pressure and pulse pressure as well as immune cell activation via IsoLG formation. RESULTS: We found that myeloid APCs predominantly express the GR and SGK1 with no expression of the MR. Expression of the GR in APCs increased after salt loading and decreased with salt depletion in salt-sensitive but not salt-resistant people and was associated with increased expression of SGK1 . Moreover, we found that plasma and urine cortisol/cortisone but not aldosterone/renin correlated with SSBP and APCs activation via IsoLGs. We also found that cortisol negatively correlates with EETs. CONCLUSION: Our findings suggest that renal cortisol signaling via the GR but not the MR in APCs contributes to SSBP via cortisol. Urine and plasma cortisol may provide an important currently unavailable feasible diagnostic tool for SSBP. Moreover, cortisol-GR-SGK1-ENaC signaling pathway may provide treatment options for SSBP. Novelty and Relevance: What Is New?: Although salt sensitivity is a major risk factor for cardiovascular morbidity and mortality, the mechanisms underlying the salt sensitivity of blood pressure (SSBP) are poorly understood.High salt modifies glucocorticoid-receptor expression in antigen-presenting cells (APCs), suggesting a critical role of glucocorticoids in SSBP. Elevated glucocorticoid receptor (GR) expression compared to mineralocorticoid receptor (MR) expression in APCs provides evidence for a GR-dependent pathway to SSBP. Isolevuglandins (IsoLGs) increased in APCs in vitro after hydrocortisone treatment compared to aldosterone treatment, indicating that cortisol was the predominant driver of IsoLG production in these cells. Our studies suggest a mechanism for SGK1 expression through GR activation by cortisol that differs from the currently accepted mechanism for SSBP pathogenesis. What Is Relevant?: Although aldosterone has been used to study SSBP, there has been no consideration of cortisol as a major driver of the condition.Understanding alternative inflammatory pathways that affect SSBP may provide insights into the mechanism of SSBP and suggest a range of therapeutic targets.Our studies may provide a practical approach to understanding and treating salt-sensitive hypertension.Clinical/Pathophysiological Implications?: Our findings firmly support a GR-dependent signaling pathway for activating SSBP via SGK1 expression. A cortisol-driven mechanism could provide a practical approach for targeted treatments for salt-sensitive hypertension. Moreover, it could pave the way for a diagnostic approach.

6.
J Cell Physiol ; 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38888084

RESUMEN

In academia, particularly in science, technology, engineering, and mathematics (STEM), writing accountability groups have emerged as an effective technique to enhance writing productivity by offering structure, increasing the commitment to write, and fostering social commitment. The rapid development of technology has introduced a new challenge across STEM fields: technostress, where individuals face heightened stress due to novel applications of technology. To address this, we introduce Technology Accountability Groups (TAGs), a novel form of community support for graduate students and faculty. TAGs are tailored to help individuals navigate technological innovations, alleviate technostress, acquire new skills, motivate, and connect with leaders in the field. This paper presents a framework for establishing, implementing, and sustaining TAGs in STEM.

7.
Circ Res ; 134(11): e150-e175, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38781298

RESUMEN

HIV type 1 (HIV-1) is the causative agent of AIDS. Since the start of the epidemic, HIV/AIDS has been responsible for ≈40 million deaths. Additionally, an estimated 39 million people are currently infected with the virus. HIV-1 primarily infects immune cells, such as CD4+ (cluster of differentiation 4+) T lymphocytes (T cells), and as a consequence, the number of CD4+ T cells progressively declines in people living with HIV. Within a span of ≈10 years, HIV-1 infection leads to the systemic failure of the immune system and progression to AIDS. Fortunately, potent antiviral therapy effectively controls HIV-1 infection and prevents AIDS-related deaths. The efficacy of the current antiviral therapy regimens has transformed the outcome of HIV/AIDS from a death sentence to a chronic disease with a prolonged lifespan of people living with HIV. However, antiviral therapy is not curative, is challenged by virus resistance, can be toxic, and, most importantly, requires lifelong adherence. Furthermore, the improved lifespan has resulted in an increased incidence of non-AIDS-related morbidities in people living with HIV including cardiovascular diseases, renal disease, liver disease, bone disease, cancer, and neurological conditions. In this review, we summarize the current state of knowledge of the cardiovascular comorbidities associated with HIV-1 infection, with a particular focus on hypertension. We also discuss the potential mechanisms known to drive HIV-1-associated hypertension and the knowledge gaps in our understanding of this comorbid condition. Finally, we suggest several directions of future research to better understand the factors, pathways, and mechanisms underlying HIV-1-associated hypertension in the post-antiviral therapy era.


Asunto(s)
Infecciones por VIH , Hipertensión , Humanos , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/epidemiología , Infecciones por VIH/complicaciones , Hipertensión/tratamiento farmacológico , Hipertensión/epidemiología , Factores de Riesgo , VIH-1/patogenicidad , Animales
8.
bioRxiv ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38798364

RESUMEN

Alzheimer's Disease (AD) is a global health issue, affecting over 6 million in the United States, with that number expected to increase as the aging population grows. As a neurodegenerative disorder that affects memory and cognitive functions, it is well established that AD is associated with cardiovascular risk factors beyond only cerebral decline. However, the study of cerebrovascular techniques for AD is still evolving. Here, we provide reproducible methods to measure impedance-based pulse wave velocity (PWV), a marker of arterial stiffness, in the systemic vascular (aortic PWV) and in the cerebral vascular (cerebral PWV) systems. Using aortic impedance and this relatively novel technique of cerebral impedance to comprehensively describe the systemic vascular and the cerebral vascular systems, we examined the sex-dependent differences in 5x transgenic mice (5XFAD) with AD under normal and high-fat diet, and in wild-type mice under a normal diet. Additionally, we validated our method for measuring cerebrovascular impedance in a model of induced stress in 5XFAD. Together, our results show that sex and diet differences in wildtype and 5XFAD mice account for very minimal differences in cerebral impedance. Interestingly, 5XFAD, and not wildtype, male mice on a chow diet show higher cerebral impedance, suggesting pathological differences. Opposingly, when we subjected 5XFAD mice to stress, we found that females showed elevated cerebral impedance. Using this validated method of measuring impedance-based aortic and cerebral PWV, future research may explore the effects of modifying factors including age, chronic diet, and acute stress, which may mediate cardiovascular risk in AD.

9.
STAR Protoc ; 5(2): 102997, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38748884

RESUMEN

It is well-understood that the science, technology, engineering, and mathematics (STEM) fields have unique challenges that discourage recruiting and retaining underrepresented minorities. Research programs aimed at undergraduates have arisen as a critical mechanism for fostering innovation and addressing the challenges faced by underrepresented minorities. Here, we review various undergraduate research programs designed to provide exposure to undergraduates, with a focus on underrepresented minorities in STEM disciplines. We provide insight into selected programs' objectives, key features, potential limitations, and outcomes. We also offer recommendations for future improvements of each research program, particularly in the context of mentorship. These programs range from broad-reaching initiatives (e.g., Leadership Alliance) to more specific programs targeting underrepresented students. By offering a nuanced understanding of each program's structure, we seek to provide a brief overview of the landscape of diversity-focused STEM initiatives and a guide on how to run a research program effectively.


Asunto(s)
Matemática , Grupos Minoritarios , Ciencia , Estudiantes , Tecnología , Humanos , Grupos Minoritarios/educación , Tecnología/educación , Ciencia/educación , Matemática/educación , Investigación/educación , Universidades , Ingeniería/educación
10.
Circ Res ; 134(10): 1234-1239, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38723029

RESUMEN

The year 2024 marks the centennial of the initiation of the American Heart Association. Over the past 100 years, the American Heart Association has led groundbreaking discoveries in cardiovascular disease including salt sensitivity of blood pressure, which has been studied since the mid-1900s. Salt sensitivity of blood pressure is an important risk factor for cardiovascular events, but the phenotype remains unclear because of insufficient understanding of the underlying mechanisms and lack of feasible diagnostic tools. In honor of this centennial, we commemorate the initial discovery of salt sensitivity of blood pressure and chronicle the subsequent scientific discoveries and efforts to mitigate salt-induced cardiovascular disease with American Heart Association leading the way. We also highlight determinants of the pathophysiology of salt sensitivity of blood pressure in humans and recent developments in diagnostic methods and future prospects.


Asunto(s)
Presión Sanguínea , Hipertensión , Cloruro de Sodio Dietético , Animales , Humanos , American Heart Association/historia , Presión Sanguínea/efectos de los fármacos , Enfermedades Cardiovasculares/fisiopatología , Enfermedades Cardiovasculares/etiología , Hipertensión/etiología , Hipertensión/historia , Hipertensión/fisiopatología , Cloruro de Sodio Dietético/efectos adversos , Cloruro de Sodio Dietético/historia , Estados Unidos/epidemiología , Historia del Siglo XX , Historia del Siglo XXI
11.
Noncoding RNA Res ; 9(3): 954-963, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38699204

RESUMEN

Background: Plasma microRNAs (miRNAs) have recently garnered attention for their potential as stable biomarkers in the context of Prostate Cancer (PCa), demonstrating established associations with tumor grade, biochemical recurrence (BCR), and metastasis. This study seeks to assess the utility of plasma miRNAs as prognostic indicators for distinguishing between high-grade and low-grade PCa, and to explore their involvement in PCa pathogenesis. Methodology: We conducted miRNA profiling in both plasma and tissue specimens from patients with varying PCa grades. Subsequently, the identified miRNAs were validated in a substantial independent PCa cohort. Furthermore, we identified and confirmed the gene targets of these selected miRNAs through Western blot analysis. Results: In our plasma profiling investigation, we identified 98, 132, and 154 differentially expressed miRNAs (DEMs) in high-grade PCa vs. benign prostatic hyperplasia (BPH), low-grade PCa vs. BPH, and high-grade PCa vs. low-grade PCa, respectively. Our tissue profiling study revealed 111, 132, and 257 statistically significant DEMs for the same comparisons. Notably, miR-373-3p emerged as the sole consistently dysregulated miRNA in both plasma and tissue samples of PCa. This miRNA displayed significant overexpression in plasma and tissue samples, with fold changes of 3.584 ± 0.5638 and 8.796 ± 1.245, respectively. Furthermore, we observed a significant reduction in KPNA2 protein expression in PCa. Conclusion: Our findings lend support to the potential of plasma miR-373-3p as a valuable biomarker for predicting and diagnosing PCa. Additionally, this miRNA may contribute to the progression of PCa by inhibiting KPNA2 expression, shedding light on its role in the disease.

13.
Int J Mol Sci ; 25(10)2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38791545

RESUMEN

Hypertension stands as the leading global cause of mortality, affecting one billion individuals and serving as a crucial risk indicator for cardiovascular morbidity and mortality. Elevated salt intake triggers inflammation and hypertension by activating antigen-presenting cells (APCs). We found that one of the primary reasons behind this pro-inflammatory response is the epithelial sodium channel (ENaC), responsible for transporting sodium ions into APCs and the activation of NADPH oxidase, leading to increased oxidative stress. Oxidative stress increases lipid peroxidation and the formation of pro-inflammatory isolevuglandins (IsoLG). Long noncoding RNAs (lncRNAs) play a crucial role in regulating gene expression, and MALAT1, broadly expressed across cell types, including blood vessels and inflammatory cells, is also associated with inflammation regulation. In hypertension, the decreased transcriptional activity of nuclear factor erythroid 2-related factor 2 (Nrf2 or Nfe2l2) correlates with heightened oxidative stress in APCs and impaired control of various antioxidant genes. Kelch-like ECH-associated protein 1 (Keap1), an intracellular inhibitor of Nrf2, exhibits elevated levels of hypertension. Sodium, through an increase in Sp1 transcription factor binding at its promoter, upregulates MALAT1 expression. Silencing MALAT1 inhibits sodium-induced Keap1 upregulation, facilitating the nuclear translocation of Nrf2 and subsequent antioxidant gene transcription. Thus, MALAT1, acting via the Keap1-Nrf2 pathway, modulates antioxidant defense in hypertension. This review explores the potential role of the lncRNA MALAT1 in controlling the Keap1-Nrf2-antioxidant defense pathway in salt-induced hypertension. The inhibition of MALAT1 holds therapeutic potential for the progression of salt-induced hypertension and cardiovascular disease (CVD).


Asunto(s)
Hipertensión , ARN Largo no Codificante , Animales , Humanos , Regulación de la Expresión Génica , Hipertensión/genética , Hipertensión/metabolismo , Hipertensión/etiología , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/genética , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/genética , Estrés Oxidativo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Cloruro de Sodio Dietético/efectos adversos
14.
Circ Res ; 134(11): 1607-1635, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38781293

RESUMEN

Given advances in antiretroviral therapy, the mortality rate for HIV infection has dropped considerably over recent decades. However, people living with HIV (PLWH) experience longer life spans coupled with persistent immune activation despite viral suppression and potential toxicity from long-term antiretroviral therapy use. Consequently, PLWH face a cardiovascular disease (CVD) risk more than twice that of the general population, making it the leading cause of death among this group. Here, we briefly review the epidemiology of CVD in PLWH highlighting disparities at the intersections of sex and gender, age, race/ethnicity, and the contributions of social determinants of health and psychosocial stress to increased CVD risk among individuals with marginalized identities. We then overview the pathophysiology of HIV and discuss the primary factors implicated as contributors to CVD risk among PLWH on antiretroviral therapy. Subsequently, we highlight the functional evidence of premature vascular dysfunction as an early pathophysiological determinant of CVD risk among PLWH, discuss several mechanisms underlying premature vascular dysfunction in PLWH, and synthesize current research on the pathophysiological mechanisms underlying accelerated vascular aging in PLWH, focusing on immune activation, chronic inflammation, and oxidative stress. We consider understudied aspects such as HIV-related changes to the gut microbiome and psychosocial stress, which may serve as mechanisms through which exercise can abrogate accelerated vascular aging. Emphasizing the significance of exercise, we review various modalities and their impacts on vascular health, proposing a holistic approach to managing CVD risks in PLWH. The discussion extends to critical future study areas related to vascular aging, CVD, and the efficacy of exercise interventions, with a call for more inclusive research that considers the diversity of the PLWH population.


Asunto(s)
Enfermedades Cardiovasculares , Infecciones por VIH , Humanos , Infecciones por VIH/epidemiología , Infecciones por VIH/complicaciones , Enfermedades Cardiovasculares/epidemiología , Envejecimiento , Ejercicio Físico , Terapia por Ejercicio , Factores de Riesgo
15.
Curr Hypertens Rep ; 26(7): 339-347, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38613621

RESUMEN

PURPOSE OF REVIEW: Cardiovascular disease (CVD) is a leading cause of death and chronic disability worldwide. Yet, despite extensive intervention strategies the number of persons affected by CVD continues to rise. Thus, there is great interest in unveiling novel mechanisms that may lead to new treatments. Considering this dilemma, recent focus has turned to the neuroimmune mechanisms involved in CVD pathology leading to a deeper understanding of the brain's involvement in disease pathology. This review provides an overview of new and salient findings regarding the neuroimmune mechanisms that contribute to CVD. RECENT FINDINGS: The brain contains neuroimmune niches comprised of glia in the parenchyma and immune cells at the brain's borders, and there is strong evidence that these neuroimmune niches are important in both health and disease. Mechanistic studies suggest that the activation of glia and immune cells in these niches modulates CVD progression in hypertension and heart failure and contributes to the inevitable end-organ damage to the brain. This review provides evidence supporting the role of neuroimmune niches in CVD progression. However, additional research is needed to understand the effects of prolonged neuroimmune activation on brain function.


Asunto(s)
Encéfalo , Enfermedades Cardiovasculares , Neuroinmunomodulación , Humanos , Enfermedades Cardiovasculares/inmunología , Enfermedades Cardiovasculares/fisiopatología , Neuroinmunomodulación/fisiología , Encéfalo/inmunología , Encéfalo/fisiopatología , Encéfalo/patología , Neuroglía/inmunología , Animales
16.
Am J Physiol Renal Physiol ; 326(6): F1066-F1077, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38634134

RESUMEN

The epithelial Na+ channel (ENaC) γ subunit is essential for homeostasis of Na+, K+, and body fluid. Dual γ subunit cleavage before and after a short inhibitory tract allows dissociation of this tract, increasing channel open probability (PO), in vitro. Cleavage proximal to the tract occurs at a furin recognition sequence (143RKRR146, in the mouse γ subunit). Loss of furin-mediated cleavage prevents in vitro activation of the channel by proteolysis at distal sites. We hypothesized that 143RKRR146 mutation to 143QQQQ146 (γQ4) in 129/Sv mice would reduce ENaC PO, impair flow-stimulated flux of Na+ (JNa) and K+ (JK) in perfused collecting ducts, reduce colonic amiloride-sensitive short-circuit current (ISC), and impair Na+, K+, and body fluid homeostasis. Immunoblot of γQ4/Q4 mouse kidney lysates confirmed loss of a band consistent in size with the furin-cleaved proteolytic fragment. However, γQ4/Q4 male mice on a low Na+ diet did not exhibit altered ENaC PO or flow-induced JNa, though flow-induced JK modestly decreased. Colonic amiloride-sensitive ISC in γQ4/Q4 mice was not altered. γQ4/Q4 males, but not females, exhibited mildly impaired fluid volume conservation when challenged with a low Na+ diet. Blood Na+ and K+ were unchanged on a regular, low Na+, or high K+ diet. These findings suggest that biochemical evidence of γ subunit cleavage should not be used in isolation to evaluate ENaC activity. Furthermore, factors independent of γ subunit cleavage modulate channel PO and the influence of ENaC on Na+, K+, and fluid volume homeostasis in 129/Sv mice, in vivo.NEW & NOTEWORTHY The epithelial Na+ channel (ENaC) is activated in vitro by post-translational proteolysis. In vivo, low Na+ or high K+ diets enhance ENaC proteolysis, and proteolysis is hypothesized to contribute to channel activation in these settings. Using a mouse expressing ENaC with disruption of a key proteolytic cleavage site, this study demonstrates that impaired proteolytic activation of ENaC's γ subunit has little impact upon channel open probability or the ability of mice to adapt to low Na+ or high K+ diets.


Asunto(s)
Canales Epiteliales de Sodio , Proteolisis , Sodio , Animales , Canales Epiteliales de Sodio/metabolismo , Canales Epiteliales de Sodio/genética , Masculino , Femenino , Sodio/metabolismo , Túbulos Renales Colectores/metabolismo , Homeostasis , Furina/metabolismo , Furina/genética , Ratones , Colon/metabolismo , Potasio/metabolismo , Dieta Hiposódica , Ratones de la Cepa 129 , Mutación , Amilorida/farmacología
17.
Curr Hypertens Rep ; 26(6): 273-290, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38602583

RESUMEN

PURPOSE OF REVIEW: Hypertension is a principal risk factor for cardiovascular morbidity and mortality, with its severity exacerbated by high sodium intake, particularly in individuals with salt-sensitive blood pressure. However, the mechanisms underlying hypertension and salt sensitivity are only partly understood. Herein, we review potential interactions in hypertension pathophysiology involving the immune system, endoplasmic reticulum (ER) stress, the unfolded protein response (UPR), and proteostasis pathways; identify knowledge gaps; and discuss future directions. RECENT FINDINGS: Recent advancements by our research group and others reveal interactions within and between adaptive and innate immune responses in hypertension pathophysiology. The salt-immune-hypertension axis is further supported by the discovery of the role of dendritic cells in hypertension, marked by isolevuglandin (IsoLG) formation. Alongside these broadened understandings of immune-mediated salt sensitivity, the contributions of T cells to hypertension have been recently challenged by groups whose findings did not support increased resistance of Rag-1-deficient mice to Ang II infusion. Hypertension has also been linked to ER stress and the UPR. Notably, a holistic approach is needed because the UPR engages in crosstalk with autophagy, the ubiquitin proteasome, and other proteostasis pathways, that may all involve hypertension. There is a critical need for studies to establish cause and effect relationships between ER stress and the UPR in hypertension pathophysiology in humans and to determine whether the immune system and ER stress function mainly to exacerbate or initiate hypertension and target organ injury. This review of recent studies proposes new avenues for future research for targeted therapeutic interventions.


Asunto(s)
Presión Sanguínea , Estrés del Retículo Endoplásmico , Hipertensión , Respuesta de Proteína Desplegada , Hipertensión/fisiopatología , Estrés del Retículo Endoplásmico/efectos de los fármacos , Humanos , Animales , Presión Sanguínea/fisiología , Cloruro de Sodio Dietético/efectos adversos , Proteostasis
18.
Am J Physiol Heart Circ Physiol ; 326(6): H1396-H1401, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38578238

RESUMEN

Given the growing interest in the role of zinc in the onset and progression of diseases, there is a crucial demand for reliable methods to modulate zinc homeostasis. Using a dietary approach, we provide validated strategies to alter whole-body zinc in mice, applicable across species. For confirmation of zinc status, animal growth rates as well as plasma and urine zinc levels were evaluated. The accessible and cost-effective methodology outlined will increase scientific rigor, ensuring reproducibility in studies exploring the impact of zinc deficiency and repletion on the onset and progression of diseases.NEW & NOTEWORTHY This methods paper details dietary approaches to alter zinc homeostasis in rodents and qualitative and quantitative methods to ensure the zinc status of experimental animals. The outlined accessible and cost-effective protocol will elevate scientific rigor, ensuring reproducibility in studies exploring the impact of zinc deficiency and repletion on the onset and progression of a multitude of health conditions and diseases.


Asunto(s)
Zinc , Zinc/deficiencia , Zinc/metabolismo , Zinc/orina , Zinc/sangre , Animales , Reproducibilidad de los Resultados , Ratones , Ratones Endogámicos C57BL , Homeostasis , Masculino
19.
J Cell Physiol ; 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38595027

RESUMEN

Qualifying exams and thesis committees are crucial components of a PhD candidate's journey. However, many candidates have trouble navigating these milestones and knowing what to expect. This article provides advice on meeting the requirements of the qualifying exam, understanding its format and components, choosing effective preparation strategies, retaking the qualifying exam, if necessary, and selecting a thesis committee, all while maintaining one's mental health. This comprehensive guide addresses components of the graduate school process that are often neglected.

20.
Circ Res ; 134(11): 1483-1494, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38666386

RESUMEN

BACKGROUND: Neutrophil extracellular traps (NETs) are composed of DNA, enzymes, and citrullinated histones that are expelled by neutrophils in the process of NETosis. NETs accumulate in the aorta and kidneys in hypertension. PAD4 (protein-arginine deiminase-4) is a calcium-dependent enzyme that is essential for NETosis. TRPV4 (transient receptor potential cation channel subfamily V member 4) is a mechanosensitive calcium channel expressed in neutrophils. Thus, we hypothesize that NETosis contributes to hypertension via NET-mediated endothelial cell (EC) dysfunction. METHODS: NETosis-deficient Padi4-/- mice were treated with Ang II (angiotensin II). Blood pressure was measured by radiotelemetry, and vascular reactivity was measured with wire myography. Neutrophils were cultured with or without ECs and exposed to normotensive or hypertensive uniaxial stretch. NETosis was measured by flow cytometry. ECs were treated with citrullinated histone H3, and gene expression was measured by quantitative reverse transcription PCR. Aortic rings were incubated with citrullinated histone H3, and wire myography was performed to evaluate EC function. Neutrophils were treated with the TRPV4 agonist GSK1016790A. Calcium influx was measured using Fluo-4 dye, and NETosis was measured by immunofluorescence. RESULTS: Padi4-/- mice exhibited attenuated hypertension, reduced aortic inflammation, and improved EC-dependent vascular relaxation in response to Ang II. Coculture of neutrophils with ECs and exposure to hypertensive uniaxial stretch increased NETosis and accumulation of neutrophil citrullinated histone H3. Histone H3 and citrullinated histone H3 exposure attenuates EC-dependent vascular relaxation. Treatment of neutrophils with the TRPV4 agonist GSK1016790A increases intracellular calcium and NETosis. CONCLUSIONS: These observations identify a role of NETosis in the pathogenesis of hypertension. Moreover, they define an important role of EC stretch and TRPV4 as initiators of NETosis. Finally, they define a role of citrullinated histones as drivers of EC dysfunction in hypertension.


Asunto(s)
Trampas Extracelulares , Hipertensión , Ratones Noqueados , Arginina Deiminasa Proteína-Tipo 4 , Canales Catiónicos TRPV , Animales , Trampas Extracelulares/metabolismo , Hipertensión/metabolismo , Hipertensión/fisiopatología , Canales Catiónicos TRPV/metabolismo , Canales Catiónicos TRPV/genética , Ratones , Arginina Deiminasa Proteína-Tipo 4/metabolismo , Neutrófilos/metabolismo , Ratones Endogámicos C57BL , Masculino , Angiotensina II/farmacología , Humanos , Histonas/metabolismo , Presión Sanguínea , Células Cultivadas , Células Endoteliales/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...