Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 15(2)2022 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-35057119

RESUMEN

Heterogeneous photocatalysis using semiconductor oxides such as TiO2, provides an up-and-coming solution for the degradation of environmental pollutants compared with other technologies. TiO2-containing construction materials and paints activated by UV/solar light destroy the ozone precursors NO and NO2 up to 80% and 30%, respectively. The majority of TiO2 materials developed so far are primarily for outdoor use. In recent years, substantial efforts have been made to investigate further the photocatalytic activity of materials containing TiO2 toward priority air pollutants such as NO, NO2, and volatile organic compounds (VOCs) frequently accumulated at high concentration levels, particularly in indoor spaces. The intention of the investigations was to modify the titanium dioxide (TiO2), so that it may be activated by visible light and subsequently used as additive in building envelop materials and indoor paints. This has been achieved, to a high extent, through doping of TiO2 with transition metals such as V, Cr, Fe, Mn, Ni, Co, Cu, and Zn, which reduce the energy gap of TiO2, facilitating the generation of free electrons and holes, thus, extending the absorption spectral range of modified TiO2 to the area of visible light (bathochromic shift-redshift). A substantial problem using TiO2-containing paints and other building materials in indoor environments is the formation of byproducts, e.g., formaldehyde, through the heterogeneous photocatalytic reaction of TiO2 with organic matrices. This affects the air quality in confined spaces and, thus, becomes a possible risk for human health and wellbeing. This work describes the principles and mechanisms of the photocatalytic reactions at the air/catalyst interface of priority pollutants such as NO, benzene, and toluene as individual compounds or mixtures. Emphasis is placed on the reaction and recombination processes of the charge carriers, valence band positive holes (h+) and free electrons (e-), on the surface of TiO2, and on key factors affecting the photocatalytic processes, such as humidity. A hypothesis on the role of aromatic compounds in suppressing the recombination process (h+ and e-) is formulated and discussed. Furthermore, the results of the photocatalytic degradation of NO under visible light conditions using different admixtures of TiO2 and manganese doped (Mn-TiO2) are presented and discussed.

2.
ACS Omega ; 4(15): 16429-16440, 2019 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-31616821

RESUMEN

Several parameters, including specific surface area, morphology, crystal size, and dopant concentration, play a significant role in improving the photocatalytic performance of ZnO. However, it is still unclear which of these parameters play a significant role in enhancing the photocatalytic activity. Herein, undoped and Mn-, Co-, and Cu-doped platelet-like zinc oxide (ZnO) nanostructures were synthesized via a facile microwave synthetic route, and their ultraviolet (UV) and visible-light-induced photocatalytic activities, by monitoring the gaseous acetaldehyde (CH3CHO) degradation, were systematically investigated. Both the pure and doped ZnO nanostructures were found to be UV-active, as the CH3CHO oxidation photocatalysts with the Cu-doped ZnO one being the most UV-efficient photocatalyst. However, upon visible light exposure, all ZnO-nanostructured samples displayed no photocatalytic activity except the Co-doped ZnO, which showed a measurable photocatalytic activity. The latter suggests that Co-doped ZnO nanostructures are potent candidates for several indoor photocatalytic applications. Various complementary techniques were utilized to improve the understanding of the influence of Mn-/Co-/Cu-doping on the photocatalytic performance of the ZnO nanostructures. Results showed that the synergetic effects of variation in morphology, surface defects, that is, VO, high specific surface areas, and porosity played a significant role in modulating the photocatalytic activity of ZnO nanostructures.

3.
ACS Appl Bio Mater ; 1(4): 1154-1164, 2018 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34996156

RESUMEN

Ordinary textiles are very often malodorous and the origin of cross-infection. Their microclimate, consisting of moisture, contaminants, and sweat, provides favorable conditions for microbial growth. Therefore, simple approaches of surface modification using functional materials are widely adopted to introduce antibacterial properties. This study reports a simple and low cost technique that renders cotton fabrics antibacterial. Manganese (Mn)-doped photocatalytic titanium dioxide (TiO2) nanoparticles of ∼150 nm average diameter have been prepared by sol gel and applied on textile fabrics using a silicone binder. The treated fabrics displayed 100% reduction of Staphylococcus aureus (Gram-positive) and Klebsiella pneumoniae (Gram-negative) populations within 120 min under sunlight, demonstrating first order of reduction kinetics. Moreover, the functionalized fabrics demonstrated complete degradation of a methylene blue (MB) dye adsorbed on their surface, under both UV and visible light irradiation, turning them white. A similar effect was observed when the treated fabrics were immersed in a MB dye solution and subsequently irradiated. Here, the cotton fabrics functionalized with Mn-doped TiO2 nanoparticles were able to discolour the dissolved MB dye, demonstrating a water purification effect. In addition, the modified fabrics were resistant to several laundry cycles. Physical properties like mechanical strength, color, breathability, and aesthetic of the treated cotton fabrics remained unchanged. The modified cotton fabrics can be envisioned as antibacterial, antiodorous, and self-cleaning textiles for sports, medical uses, uniforms, fashion, home furnishing, and leisure activities. Finally, the treated textiles were found to be biocompatible.

4.
ACS Sens ; 3(1): 135-142, 2018 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-29192496

RESUMEN

Hybrid lead halide spin coated perovskite films have been successfully tested as portable, flexible, operated at room temperature, self-powered, and ultrasensitive ozone sensing elements. The electrical resistance of the hybrid lead mixed halide perovskite (CH3NH3PbI3-xClx) sensing element, was immediately decreased when exposed to an ozone (O3) environment and manage to recover its pristine electrical conductivity values within few seconds after the complete removal of ozone gas. The sensing measurements showed different response times at different gas concentrations, good repeatability, ultrahigh sensitivity and fast recovery time. To the best of our knowledge, this is the first time that a lead halide perovskite semiconductor material is demonstrating its sensing properties in an ozone environment. This work shows the potential of hybrid lead halide based perovskites as reliable sensing elements, serving the objectives of environmental control, with important socioeconomic impact.


Asunto(s)
Compuestos de Calcio/química , Óxidos/química , Ozono/análisis , Titanio/química , Conductividad Eléctrica , Impedancia Eléctrica , Plomo , Reproducibilidad de los Resultados , Semiconductores , Sensibilidad y Especificidad , Temperatura
5.
ACS Appl Mater Interfaces ; 9(46): 40290-40297, 2017 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-29094924

RESUMEN

CoxNi1-xTiO3 systems evaluated as photo- and electrocatalytic materials for oxygen evolution reaction (OER) from water have been studied. These materials have shown promising properties for this half-reaction both under (unbiased) visible-light photocatalytic approach in the presence of an electron scavenger and as electrocatalysts in dark conditions in basic media. In both situations, Co0.8Ni0.2TiO3 exhibits the best performance and is proved to display high faradaic efficiency. A synergetic effect between Co and Ni is established, improving the physicochemical properties such as surface area and pore size distribution, besides affecting the donor density and the charge carrier separation. At higher Ni content, the materials exhibit behavior more similar to that of NiTiO3, which is a less suitable material for OER than CoTiO3.

6.
J Environ Manage ; 195(Pt 2): 140-147, 2017 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-27316624

RESUMEN

The presence of pathogenic microorganisms in wastewater and their resistant nature to antibiotics impose effective disinfection treatment for public health and environmental protection. In this work, photocatalysis with metal-doped titania under artificial and natural sunlight, chlorination and UV-C irradiation were evaluated for their potential to inactivate Klebsiella pneumoniae in real wastewater. Their overall effect on antibiotic resistance profile and target antibiotic resistance genes (ARGs) was also investigated. In particular, Mn-, Co- and binary Mn/Co-TiO2 were tested resulting in bacterial decrease from 4 to 6 Logs upon 90 min of exposure to simulated solar irradiation. The response of catalysts under natural solar light was insufficient, as only a 2 Log reduction was recorded even after 60 min of treatment. The relative activity of the applied methods for K. pneumoniae inactivation was decreased in the order: photocatalysis with the binary Co/Mn-TiO2 under artificial light > chlorination with dose of 5 mg/L of free chlorine > UV-C irradiation, at an initial bacterial concentration of 107 CFU/mL. The applied methods showed various effects on antibiotic resistance profile in residual cells. Among the tested antibiotics (ampicillin, cefaclor, sulfamethoxazole and tetracycline), considerable changes in MIC values were recorded for cefaclor and tetracycline. Resistance of surviving cells after treatment remained in high levels, reflecting the abundance of the corresponding target ARGs, namely tetA, tetM, sul1, blaTEM and ampC. The notable presence of target ARGs post disinfection raises concerns and makes wastewater effluent a carrier of antibiotic resistance elements into the aquatic environment.


Asunto(s)
Klebsiella pneumoniae , Aguas del Alcantarillado , Desinfección , Farmacorresistencia Microbiana , Luz Solar
7.
Photochem Photobiol Sci ; 14(3): 506-13, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25248131

RESUMEN

Klebsiella pneumoniae is considered to be an emerging pathogen persisting under extreme environmentally stressed conditions. The aim of the present study is the investigation of inactivation rates of this pathogen in water by means of heterogeneous photocatalytic treatment under solar irradiation and the induced genetic variance applying RAPD-PCR as a molecular typing tool. Novel Mn- and Co-doped TiO2 catalysts were assessed in terms of their disinfection efficiency. The reference strain of K. pneumoniae proved to be readily inactivated, since disinfection occurred rapidly (i.e. after only 10 min of treatment) and low levels of bacterial regrowth were recorded in the dark and under natural sunlight. Binary doped titania exhibited the best photocatalytic activity, verifying the synergistic effect induced by composite dopants. Applying RAPD analysis to viable cells after treatment we concluded that increasing the treatment time led to considerable alteration of RAPD profiles and the homology coefficient ranged almost between 35 and 60%. RAPD-PCR proved to be a useful typing molecular tool that under standardized conditions exhibits highly reproducible results. Genetic variation among isolates increased in relation to the period of treatment and prolonged irradiation in each case affected the overall alteration in band patterns. RAPD patterns were highly diverse between treated and untreated isolates when disinfection was performed with the Co-doped titania. The broad spectrum of genetic variance and generated polymorphisms has the potential to increase the already significant virulence of the species.


Asunto(s)
Klebsiella pneumoniae/genética , Klebsiella pneumoniae/efectos de la radiación , Viabilidad Microbiana/efectos de la radiación , Polimorfismo Genético/efectos de la radiación , Luz Solar , Microbiología del Agua , Purificación del Agua/métodos , Catálisis , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Cobalto/química , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/fisiología , Manganeso/química , Viabilidad Microbiana/efectos de los fármacos , Reacción en Cadena de la Polimerasa , Polimorfismo Genético/efectos de los fármacos , Técnica del ADN Polimorfo Amplificado Aleatorio , Titanio/química , Titanio/farmacología
8.
Appl Opt ; 41(16): 3196-204, 2002 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-12064402

RESUMEN

Single layers of MgF2 and LaF3 were deposited upon superpolished fused-silica and CaF2 substrates by ion-beam sputtering (IBS) as well as by boat and electron beam (e-beam) evaporation and were characterized by a variety of complementary analytical techniques. Besides undergoing photometric and ellipsometric inspection, the samples were investigated at 193 and 633 nm by an optical scatter measurement facility. The structural properties were assessed with atomic-force microscopy, x-ray diffraction, TEM techniques that involved conventional thinning methods for the layers. For measurement of mechanical stress in the coatings, special silicon substrates were coated and analyzed. The dispersion behavior of both deposition materials, which was determined on the basis of various independent photometric measurements and data reduction techniques, is in good agreement with that published in the literature and with the bulk properties of the materials. The refractive indices of the MgF2 coatings ranged from 1.415 to 1.440 for the wavelength of the ArF excimer laser (193 nm) and from 1.435 to 1.465 for the wavelength of the F2 excimer laser (157 nm). For single layers of LaF3 the refractive indices extended from 1.67 to 1.70 at 193 nm to approximately 1.80 at 157 nm. The IBS process achieves the best homogeneity and the lowest surface roughness values (close to 1 nm(rms)) of the processes compared in the joint experiment. In contrast to MgF2 boat and e-beam evaporated coatings, which exhibit tensile mechanical stress ranging from 300 to 400 MPa, IBS coatings exhibit high compressive stress of as much as 910 MPa. A similar tendency was found for coating stress in LaF3 single layers. Experimental results are discussed with respect to the microstructural and compositional properties as well as to the surface topography of the coatings.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...