Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cells ; 13(12)2024 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-38920640

RESUMEN

Exposure to cigarette smoke is known to induce disease during pregnancy. Recent evidence showed that exposure to secondhand smoke (SHS) negatively impacts fetal and placental weights, leading to the development of intrauterine growth restriction (IUGR). Electronic cigarettes (eCigs) represent a phenomenon that has recently emerged, and their use is also steadily rising. Even so, the effects of SHS or eCigs during gestation remain limited. In the present study, we wanted to characterize the effects of SHS or eCig exposure at two different important gestational points during mouse pregnancy. C57/Bl6 mice were exposed to SHS or eCigs via a nose-only delivery system for 4 days (from 14.5 to 17.5 gestational days (dGA) or for 6 days (from 12.5 dGA to 17.5 dGA)). At the time of necropsy (18.5 dGA), placental and fetal weights were recorded, maternal blood pressure was determined, and a dipstick test to measure proteinuria was performed. Placental tissues were collected, and inflammatory molecules in the placenta were identified. Treatment with SHS showed the following: (1) a significant decrease in placental and fetal weights following four days of exposure, (2) higher systolic and diastolic blood pressure following six days of exposure, and (3) increased proteinuria after six days of exposure. Treatment with eCigs showed the following: (1) a significant decrease in placental weight and fetal weight following four or six days of exposure, (2) higher systolic and diastolic blood pressure following six days of exposure, and (3) increased proteinuria after six days of exposure. We also observed different inflammatory markers associated with the development of IUGR or PE. We conclude that the detrimental effects of SHS or eCig treatment coincide with the length of maternal exposure. These results could be beneficial in understanding the long-term effects of SHS or eCig exposure in the development of placental diseases.


Asunto(s)
Ratones Endogámicos C57BL , Placenta , Contaminación por Humo de Tabaco , Embarazo , Femenino , Animales , Contaminación por Humo de Tabaco/efectos adversos , Ratones , Placenta/efectos de los fármacos , Placenta/patología , Enfermedades Placentarias/patología , Enfermedades Placentarias/inducido químicamente , Cigarrillo Electrónico a Vapor/efectos adversos , Exposición Materna/efectos adversos , Presión Sanguínea/efectos de los fármacos , Retardo del Crecimiento Fetal/inducido químicamente , Sistemas Electrónicos de Liberación de Nicotina
2.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38732159

RESUMEN

The receptor for advanced glycation end-products (RAGE) has a central function in orchestrating inflammatory responses in multiple disease states including chronic obstructive pulmonary disease (COPD). RAGE is a transmembrane pattern recognition receptor with particular interest in lung disease due to its naturally abundant pulmonary expression. Our previous research demonstrated an inflammatory role for RAGE following acute exposure to secondhand smoke (SHS). However, chronic inflammatory mechanisms associated with RAGE remain ambiguous. In this study, we assessed transcriptional outcomes in mice exposed to chronic SHS in the context of RAGE expression. RAGE knockout (RKO) and wild-type (WT) mice were delivered nose-only SHS via an exposure system for six months and compared to control mice exposed to room air (RA). We specifically compared WT + RA, WT + SHS, RKO + RA, and RKO + SHS. Analysis of gene expression data from WT + RA vs. WT + SHS showed FEZ1, Slpi, and Msln as significant at the three-month time point; while RKO + SHS vs. WT + SHS identified cytochrome p450 1a1 and Slc26a4 as significant at multiple time points; and the RKO + SHS vs. WT + RA revealed Tmem151A as significant at the three-month time point as well as Gprc5a and Dynlt1b as significant at the three- and six-month time points. Notable gene clusters were functionally analyzed and discovered to be specific to cytoskeletal elements, inflammatory signaling, lipogenesis, and ciliogenesis. We found gene ontologies (GO) demonstrated significant biological pathways differentially impacted by the presence of RAGE. We also observed evidence that the PI3K-Akt and NF-κB signaling pathways were significantly enriched in DEGs across multiple comparisons. These data collectively identify several opportunities to further dissect RAGE signaling in the context of SHS exposure and foreshadow possible therapeutic modalities.


Asunto(s)
Pulmón , Ratones Noqueados , Receptor para Productos Finales de Glicación Avanzada , Contaminación por Humo de Tabaco , Transcriptoma , Animales , Ratones , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Pulmón/metabolismo , Pulmón/patología , Pulmón/efectos de los fármacos , Ratones Endogámicos C57BL , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Receptor para Productos Finales de Glicación Avanzada/genética , Transducción de Señal/efectos de los fármacos , Contaminación por Humo de Tabaco/efectos adversos
3.
Int J Mol Sci ; 25(8)2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38673906

RESUMEN

Air pollution poses a significant global health risk, with fine particulate matter (PM2.5) such as diesel exhaust particles (DEPs) being of particular concern due to their potential to drive systemic toxicities through bloodstream infiltration. The association between PM2.5 exposure and an increased prevalence of metabolic disorders, including obesity, metabolic syndrome, and type 2 diabetes mellitus (T2DM), is evident against a backdrop of rising global obesity and poor metabolic health. This paper examines the role of adipose tissue in mediating the effects of PM2.5 on metabolic health. Adipose tissue, beyond its energy storage function, is responsive to inhaled noxious stimuli, thus disrupting metabolic homeostasis and responding to particulate exposure with pro-inflammatory cytokine release, contributing to systemic inflammation. The purpose of this study was to characterize the metabolic response of adipose tissue in mice exposed to either DEPs or room air (RA), exploring both the adipokine profile and mitochondrial bioenergetics. In addition to a slight change in fat mass and a robust shift in adipocyte hypertrophy in the DEP-exposed animals, we found significant changes in adipose mitochondrial bioenergetics. Furthermore, the DEP-exposed animals had a significantly higher expression of adipose inflammatory markers compared with the adipose from RA-exposed mice. Despite the nearly exclusive focus on dietary factors in an effort to better understand metabolic health, these results highlight the novel role of environmental factors that may contribute to the growing global burden of poor metabolic health.


Asunto(s)
Tejido Adiposo , Inflamación , Mitocondrias , Material Particulado , Emisiones de Vehículos , Animales , Emisiones de Vehículos/toxicidad , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Ratones , Material Particulado/efectos adversos , Material Particulado/toxicidad , Tejido Adiposo/metabolismo , Tejido Adiposo/efectos de los fármacos , Inflamación/metabolismo , Inflamación/inducido químicamente , Inflamación/patología , Masculino , Ratones Endogámicos C57BL , Metabolismo Energético/efectos de los fármacos , Adipoquinas/metabolismo , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/toxicidad , Adipocitos/metabolismo , Adipocitos/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA