Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 45
1.
Small ; : e2311064, 2024 Feb 23.
Article En | MEDLINE | ID: mdl-38396219

Visual sensing of humidity and temperature by solids plays an important role in the everyday life and in industrial processes. Due to their hydrophobic nature, most covalent organic framework (COF) sensors often exhibit poor optical response when exposed to moisture. To overcome this challenge, the optical response is set out to improve, to moisture by incorporating H-bonding ionic functionalities into the COF network. A highly sensitive COF, consisting of guanidinium and diformylpyridine linkers (TG-DFP), capable of detecting changes in temperature and moisture content is fabricated. The hydrophilic nature of the framework enables enhanced water uptake, allowing the trapped water molecules to form a large number of hydrogen bonds. Despite the presence of non-emissive building blocks, the H-bonds restrict internal bond rotation within the COF, leading to reversible fluorescence and solid-state optical hydrochromism in response to relative humidity and temperature.

2.
Nucleic Acids Res ; 51(20): 11332-11344, 2023 11 10.
Article En | MEDLINE | ID: mdl-37819014

SARS-CoV-2 depends on -1 programmed ribosomal frameshifting (-1 PRF) to express proteins essential for its replication. The RNA pseudoknot stimulating -1 PRF is thus an attractive drug target. However, the structural models of this pseudoknot obtained from cryo-EM and crystallography differ in some important features, leaving the pseudoknot structure unclear. We measured the solution structure of the pseudoknot using small-angle X-ray scattering (SAXS). The measured profile did not agree with profiles computed from the previously solved structures. Beginning with each of these solved structures, we used the SAXS data to direct all atom molecular dynamics (MD) simulations to improve the agreement in profiles. In all cases, this refinement resulted in a bent conformation that more closely resembled the cryo-EM structures than the crystal structure. Applying the same approach to a point mutant abolishing -1 PRF revealed a notably more bent structure with reoriented helices. This work clarifies the dynamic structures of the SARS-CoV-2 pseudoknot in solution.


Molecular Dynamics Simulation , RNA, Viral , SARS-CoV-2 , Humans , COVID-19/virology , Frameshifting, Ribosomal , Nucleic Acid Conformation , RNA, Viral/chemistry , SARS-CoV-2/chemistry , SARS-CoV-2/genetics , Scattering, Small Angle , X-Ray Diffraction
3.
J Chem Theory Comput ; 19(19): 6827-6838, 2023 Oct 10.
Article En | MEDLINE | ID: mdl-37728274

Condensation of DNA is vital for its biological functions and controlled nucleic acid assemblies. However, the mechanisms of DNA condensation are not fully understood due to the inability of experiments to access cation distributions and the complex interplay of energetic and entropic forces during assembly. By constructing free energy surfaces using exhaustive sampling and detailed analysis of cation distributions, we elucidate the mechanism of DNA condensation in different salt conditions and with different DNA sequences. We found that DNA condensation is facilitated by the correlated dynamics of the localized cations at the grooves of DNA helices. These dynamics are strongly dependent on the salt conditions and DNA sequences. In the presence of magnesium ions, major groove binding facilitates attraction. In contrast, in the presence of polyvalent cations, minor groove binding serves to create charge patterns, leading to condensation. Our findings present a novel advancement in the field and have broad implications for understanding and controlling nucleic acid complexes in vivo and in vitro.

4.
J Chem Phys ; 159(3)2023 Jul 21.
Article En | MEDLINE | ID: mdl-37458344

Determining collective variables (CVs) for conformational transitions is crucial to understanding their dynamics and targeting them in enhanced sampling simulations. Often, CVs are proposed based on intuition or prior knowledge of a system. However, the problem of systematically determining a proper reaction coordinate (RC) for a specific process in terms of a set of putative CVs can be achieved using committor analysis (CA). Identifying essential degrees of freedom that govern such transitions using CA remains elusive because of the high dimensionality of the conformational space. Various schemes exist to leverage the power of machine learning (ML) to extract an RC from CA. Here, we extend these studies and compare the ability of 17 different ML schemes to identify accurate RCs associated with conformational transitions. We tested these methods on an alanine dipeptide in vacuum and on a sarcosine dipeptoid in an implicit solvent. Our comparison revealed that the light gradient boosting machine method outperforms other methods. In order to extract key features from the models, we employed Shapley Additive exPlanations analysis and compared its interpretation with the "feature importance" approach. For the alanine dipeptide, our methodology identifies ϕ and θ dihedrals as essential degrees of freedom in the C7ax to C7eq transition. For the sarcosine dipeptoid system, the dihedrals ψ and ω are the most important for the cisαD to transαD transition. We further argue that analysis of the full dynamical pathway, and not just endpoint states, is essential for identifying key degrees of freedom governing transitions.


Dipeptides , Sarcosine , Molecular Conformation , Dipeptides/chemistry , Solvents , Alanine/chemistry
5.
Nat Commun ; 14(1): 3765, 2023 Jun 23.
Article En | MEDLINE | ID: mdl-37353549

Controlling the number of molecular switches and their relative positioning within porous materials is critical to their functionality and properties. The proximity of many molecular switches to one another can hinder or completely suppress their response. Herein, a synthetic strategy involving mixed linkers is used to control the distribution of spiropyran-functionalized linkers in a covalent organic framework (COF). The COF contains a spiropyran in each pore which exhibits excellent reversible photoswitching behavior to its merocyanine form in the solid state in response to UV/Vis light. The spiro-COF possesses an urchin-shaped morphology and exhibits a morphological transition to 2D nanosheets and vesicles in solution upon UV light irradiation. The merocyanine-equipped COFs are extremely stable and possess a more ordered structure with enhanced photoluminescence. This approach to modulating structural isomerization in the solid state is used to develop inkless printing media, while the photomediated polarity change is used for water harvesting applications.


Cockayne Syndrome , Metal-Organic Frameworks , Humans , Nitro Compounds , Porosity
6.
Small ; 19(37): e2206232, 2023 09.
Article En | MEDLINE | ID: mdl-37170734

Oligomerization of antimicrobial peptides (AMPs) is critical in their effects on pathogens. LL-37 and its truncated fragments are widely investigated regarding their structures, antimicrobial activities, and application, such as developing new antibiotics. Due to the small size and weak intermolecular interactions of LL-37 fragments, it is still elusive to establish the relationship between oligomeric states and antimicrobial activities. Here, an α-hemolysin nanopore, mass spectrometry (MS), and molecular dynamic (MD) simulations are used to characterize the oligomeric states of two LL-37 fragments. Nanopore studies provide evidence of trapping events related to the oligomer formation and provide further details on their stabilities, which are confirmed by MS and MD simulations. Furthermore, simulation results reveal the molecular basis of oligomer dynamics and states of LL-37 fragments. This work provides unique insights into the relationship between the oligomer dynamics of AMPs and their antimicrobial activities at the single-molecule level. The study demonstrates how integrating methods allows deciphering single molecule level understanding from nanopore sensing approaches.


Anti-Infective Agents , Nanopores , Hemolysin Proteins/chemistry , Molecular Dynamics Simulation
7.
Front Bioinform ; 2: 781949, 2022.
Article En | MEDLINE | ID: mdl-36304317

The biological role of biomolecules is intimately linked to their structural dynamics. Experimental or computational techniques alone are often insufficient to determine accurate structural ensembles in atomic detail. We use all-atom molecular dynamics (MD) simulations and couple it to small-angle X-ray scattering (SAXS) experiments to resolve the structural dynamics of RNA molecules. To accomplish this task, we utilize a set of re-weighting and biasing techniques tailored for RNA molecules. To showcase our approach, we study two RNA molecules: a riboswitch that shows structural variations upon ligand binding, and a two-way junction RNA that displays structural heterogeneity and sensitivity to salt conditions. Integration of MD simulations and experiments allows the accurate construction of conformational ensembles of RNA molecules. We observe a dynamic change of the SAM-I riboswitch conformations depending on its binding partners. The binding of SAM and Mg2+ cations stabilizes the compact state. The absence of Mg2+ or SAM leads to the loss of tertiary contacts, resulting in a dramatic expansion of the riboswitch conformations. The sensitivity of RNA structures to the ionic strength demonstrates itself in the helix junction helix (HJH). The HJH shows non-monotonic compaction as the ionic strength increases. The physics-based picture derived from the experimentally guided MD simulations allows biophysical characterization of RNA molecules. All in all, SAXS-guided MD simulations offer great prospects for studying RNA structural dynamics.

8.
Cell Rep Phys Sci ; 3(7)2022 Jul 20.
Article En | MEDLINE | ID: mdl-35936555

RNA triple helices are commonly observed tertiary motifs that are associated with critical biological functions, including signal transduction. Because the recognition of their biological importance is relatively recent, their full range of structural properties has not yet been elucidated. The integration of solution wide-angle X-ray scattering (WAXS) with molecular dynamics (MD) simulations, described here, provides a new way to capture the structures of major-groove RNA triplexes that evade crystallographic characterization. This method yields excellent agreement between measured and computed WAXS profiles and allows for an atomically detailed visualization of these motifs. Using correlation maps, the relationship between well-defined features in the scattering profiles and real space characteristics of RNA molecules is defined, including the subtle conformational variations in the double-stranded RNA upon the incorporation of a third strand by base triples. This readily applicable approach has the potential to provide insight into interactions that stabilize RNA tertiary structure that enables function.

9.
ACS Appl Mater Interfaces ; 14(34): 39293-39298, 2022 Aug 31.
Article En | MEDLINE | ID: mdl-35994411

Azacalix[n]arenes (ACAs) are lesser-known cousins of calix[n]arenes that contain amine bridges instead of methylene bridges, so they generally have higher flexibility due to enlarged cavities. Herein, we report a highly substituted cationic azacalix[4]arene-based covalent organic framework (ACA-COF) synthesized by the Zincke reaction under microwave irradiation. The current work is a rare example of a synthetic strategy that utilizes the chemical functionalization of an organic macrocycle to constrain its conformational flexibility and, thereby, produce an ordered material. Considering the ACA cavity dimensions, and the density and diversity of the polar groups in ACA-COF, we used it for adsorption of uric acid and creatinine, two major waste products generated during hemodialysis treatment in patients with renal failure. This type of application, which has the potential to save ∼400 L of water per patient per week, has only been recognized in the last decade, but could effectively address the problem of water scarcity in arid areas of the world. Rapid adsorption rates (up to k = 2191 g mg-1 min-1) were observed in our COF, exceeding reported values by several orders of magnitude.


Metal-Organic Frameworks , Water Pollutants, Chemical , Adsorption , Humans , Metal-Organic Frameworks/chemistry , Renal Dialysis , Waste Products , Water Pollutants, Chemical/analysis
10.
Sci Adv ; 8(29): eabo1190, 2022 Jul 22.
Article En | MEDLINE | ID: mdl-35857829

The stability of RNA increases as the charge density of the alkali metal cations increases. The molecular mechanism for this phenomenon remains elusive. To fill this gap, we performed all-atom molecular dynamics pulling simulations of HIV-1 trans-activation response RNA. We first established that the free energy landscape obtained in the simulations is in excellent agreement with the single-molecule optical tweezer experiments. The origin of the stronger stability in sodium compared to potassium is found to be due to the differences in the charge density-related binding modes. The smaller hydrated sodium ion preferentially binds to the highly charged phosphates that have high surface area. In contrast, the larger potassium ions interact with the major grooves. As a result, more cations condense around phosphate groups in the case of sodium ions, leading to the reduction of electrostatic repulsion. Because the proposed mechanism is generic, we predict that the same conclusions are valid for divalent alkaline earth metal cations.

11.
J Phys Chem Lett ; 13(15): 3400-3408, 2022 Apr 21.
Article En | MEDLINE | ID: mdl-35404614

The growing recognition of the functional and therapeutic roles played by RNA and the difficulties in gaining atomic-level insights by experiments are paving the way for all-atom simulations of RNA. One of the main impediments to the use of all-atom simulations is the imbalance between the energy terms of the RNA force fields. Through exhaustive sampling of an RNA helix-junction-helix (HJH) model using enhanced sampling, we critically assessed the select Amber force fields against small-angle X-ray scattering (SAXS) experiments. The tested AMBER99SB, DES-AMBER, and CUFIX force fields show deviations from measured profiles. First, we identified parameters leading to inconsistencies. Then, as a way to balance the forces governing RNA folding, we adopted strategies to refine hydrogen bonding, backbone, and base-stacking parameters. We validated the modified force field (HB-CUFIX) against SAXS data of the HJH model in different ionic strengths. Moreover, we tested a set of independent RNA systems to cross-validate the force field. Overall, HB-CUFIX demonstrates improved performance in studying thermodynamics and structural properties of realistic RNA motifs.


Molecular Dynamics Simulation , RNA , RNA/chemistry , Scattering, Small Angle , Thermodynamics , X-Ray Diffraction , X-Rays
12.
J Biol Chem ; 298(3): 101627, 2022 03.
Article En | MEDLINE | ID: mdl-35074426

Faithful replication of genomic DNA by high-fidelity DNA polymerases is crucial for the survival of most living organisms. While high-fidelity DNA polymerases favor canonical base pairs over mismatches by a factor of ∼1 × 105, fidelity is further enhanced several orders of magnitude by a 3'-5' proofreading exonuclease that selectively removes mispaired bases in the primer strand. Despite the importance of proofreading to maintaining genome stability, it remains much less studied than the fidelity mechanisms employed at the polymerase active site. Here we characterize the substrate specificity for the proofreading exonuclease of a high-fidelity DNA polymerase by investigating the proofreading kinetics on various DNA substrates. The contribution of the exonuclease to net fidelity is a function of the kinetic partitioning between extension and excision. We show that while proofreading of a terminal mismatch is efficient, proofreading a mismatch buried by one or two correct bases is even more efficient. Because the polymerase stalls after incorporation of a mismatch and after incorporation of one or two correct bases on top of a mismatch, the net contribution of the exonuclease is a function of multiple opportunities to correct mistakes. We also characterize the exonuclease stereospecificity using phosphorothioate-modified DNA, provide a homology model for the DNA primer strand in the exonuclease active site, and propose a dynamic structural model for the transfer of DNA from the polymerase to the exonuclease active site based on MD simulations.


DNA-Directed DNA Polymerase , Exonucleases , DNA/chemistry , DNA/genetics , DNA/metabolism , DNA Replication , DNA-Directed DNA Polymerase/chemistry , DNA-Directed DNA Polymerase/genetics , DNA-Directed DNA Polymerase/metabolism , Structure-Activity Relationship , Substrate Specificity
13.
J Biol Chem ; 298(1): 101451, 2022 01.
Article En | MEDLINE | ID: mdl-34838820

High-fidelity DNA polymerases select the correct nucleotide over the structurally similar incorrect nucleotides with extremely high specificity while maintaining fast rates of incorporation. Previous analysis revealed the conformational dynamics and complete kinetic pathway governing correct nucleotide incorporation using a high-fidelity DNA polymerase variant containing a fluorescent unnatural amino acid. Here we extend this analysis to investigate the kinetics of nucleotide misincorporation and mismatch extension. We report the specificity constants for all possible misincorporations and characterize the conformational dynamics of the enzyme during misincorporation and mismatch extension. We present free energy profiles based on the kinetic measurements and discuss the effect of different steps on specificity. During mismatch incorporation and subsequent extension with the correct nucleotide, the rates of the conformational change and chemistry are both greatly reduced. The nucleotide dissociation rate, however, increases to exceed the rate of chemistry. To investigate the structural basis for discrimination against mismatched nucleotides, we performed all atom molecular dynamics simulations on complexes with either the correct or mismatched nucleotide bound at the polymerase active site. The simulations suggest that the closed form of the enzyme with a mismatch bound is greatly destabilized due to weaker interactions with active site residues, nonideal base pairing, and a large increase in the distance from the 3'-OH group of the primer strand to the α-phosphate of the incoming nucleotide, explaining the reduced rates of misincorporation. The observed kinetic and structural mechanisms governing nucleotide misincorporation reveal the general principles likely applicable to other high-fidelity DNA polymerases.


Amino Acids , DNA-Directed DNA Polymerase , Fluorescent Dyes , Amino Acids/chemistry , Amino Acids/metabolism , Base Pairing , Catalytic Domain , DNA-Directed DNA Polymerase/chemistry , DNA-Directed DNA Polymerase/metabolism , Fluorescent Dyes/chemistry , Kinetics , Nucleotides/chemistry , Nucleotides/metabolism , Protein Conformation , Substrate Specificity
14.
Sci Adv ; 7(17)2021 04.
Article En | MEDLINE | ID: mdl-33893104

Double-stranded DNA (dsDNA) and RNA (dsRNA) helices display an unusual structural diversity. Some structural variations are linked to sequence and may serve as signaling units for protein-binding partners. Therefore, elucidating the mechanisms and factors that modulate these variations is of fundamental importance. While the structural diversity of dsDNA has been extensively studied, similar studies have not been performed for dsRNA. Because of the increasing awareness of RNA's diverse biological roles, such studies are timely and increasingly important. We integrate solution x-ray scattering at wide angles (WAXS) with all-atom molecular dynamics simulations to explore the conformational ensemble of duplex topologies for different sequences and salt conditions. These tightly coordinated studies identify robust correlations between features in the WAXS profiles and duplex geometry and enable atomic-level insights into the structural diversity of DNA and RNA duplexes. Notably, dsRNA displays a marked sensitivity to the valence and identity of its associated cations.

15.
J Am Chem Soc ; 143(9): 3407-3415, 2021 03 10.
Article En | MEDLINE | ID: mdl-33629851

A bowl-shaped calix[4]arene with its exciting host-guest chemistry is a versatile supramolecular building block for the synthesis of distinct coordination cages or metal-organic frameworks. However, its utility in the synthesis of crystalline covalent organic frameworks (COFs) remains challenging, presumably due to its conformational flexibility. Here, we report the synthesis of a periodic 2D extended organic network of calix[4]arenes joined by a linear benzidine linker via dynamic imine bonds. By tuning the interaction among neighboring calixarene units through varying the concentration in the reaction mixture, we show the selective formation of interpenetrated (CX4-BD-1) and non-interpenetrated (CX4-BD-2) frameworks. The cone-shaped calixarene moiety in the structural backbone allows for the interweaving of two neighboring layers in CX4-BD-1, making it a unique example of interpenetrated 2D layers. Due to the high negative surface charge from calixarene units, both COFs have shown high performance in charge-selective dye removal and an exceptional selectivity for cationic dyes irrespective of their molecular size. The charge distribution of the COFs and the resulting selectivity for the cationic dyes were further investigated using computational methods.

16.
J Biol Chem ; 296: 100184, 2021.
Article En | MEDLINE | ID: mdl-33310704

Magnesium ions play a critical role in catalysis by many enzymes and contribute to the fidelity of DNA polymerases through a two-metal ion mechanism. However, specificity is a kinetic phenomenon and the roles of Mg2+ ions in each step in the catalysis have not been resolved. We first examined the roles of Mg2+ by kinetic analysis of single nucleotide incorporation catalyzed by HIV reverse transcriptase. We show that Mg.dNTP binding induces an enzyme conformational change at a rate that is independent of free Mg2+ concentration. Subsequently, the second Mg2+ binds to the closed state of the enzyme-DNA-Mg.dNTP complex (Kd = 3.7 mM) to facilitate catalysis. Weak binding of the catalytic Mg2+ contributes to fidelity by sampling the correctly aligned substrate without perturbing the equilibrium for nucleotide binding at physiological Mg2+ concentrations. An increase of the Mg2+ concentration from 0.25 to 10 mM increases nucleotide specificity (kcat/Km) 12-fold largely by increasing the rate of the chemistry relative to the rate of nucleotide release. Mg2+ binds very weakly (Kd ≤ 37 mM) to the open state of the enzyme. Analysis of published crystal structures showed that HIV reverse transcriptase binds only two metal ions prior to incorporation of a correct base pair. Molecular dynamics simulations support the two-metal ion mechanism and the kinetic data indicating weak binding of the catalytic Mg2+. Molecular dynamics simulations also revealed the importance of the divalent cation cloud surrounding exposed phosphates on the DNA. These results enlighten the roles of the two metal ions in the specificity of DNA polymerases.


HIV Reverse Transcriptase/metabolism , HIV-1/enzymology , Magnesium/metabolism , Cations, Divalent/chemistry , Cations, Divalent/metabolism , HIV Infections/virology , HIV Reverse Transcriptase/chemistry , HIV-1/chemistry , HIV-1/metabolism , Humans , Kinetics , Magnesium/chemistry , Molecular Dynamics Simulation , Protein Conformation , Thermodynamics
17.
ACS Appl Mater Interfaces ; 12(38): 43160-43166, 2020 Sep 23.
Article En | MEDLINE | ID: mdl-32851843

On account of its nonbiodegradable nature and persistence in the environment, perfluorooctanoic acid (PFOA) accumulates in water resources and poses serious environmental issues in many parts of the world. Here, we present the development of two fluorine-rich calix[4]arene-based porous polymers, FCX4-P and FCX4-BP, and demonstrate their utility for the efficient removal of PFOA from water. These materials featured Brunauer-Emmett-Teller (BET) surface areas of up to 450 m2 g-1, which is slightly lower than their nonfluorinated counterparts (up to 596 m2 g-1). FCX4-P removes PFOA at environmentally relevant concentrations with a high rate constant of 3.80 g mg-1 h-1 and reached an exceptional maximum PFOA uptake capacity of 188.7 mg g-1. In addition, it could be regenerated by simple methanol wash and reused without a significant decrease in performance.

18.
J Phys Chem B ; 124(38): 8240-8248, 2020 09 24.
Article En | MEDLINE | ID: mdl-32840372

Extensive experimental studies on the folding of cytochrome c (Cyt c) make this small protein an ideal target for atomic detailed simulations for the purposes of quantitatively characterizing the structural transitions and the associated time scales for folding to the native state from an ensemble of unfolded states. We use previously generated atomically detailed folding trajectories by the stochastic difference equation in length to calculate the time-dependent changes in the small-angle X-ray scattering (SAXS) profiles. Excellent agreement is obtained between experiments and simulations for the time-dependent SAXS spectra, allowing us to identify the structures of the folding intermediates, which shows that Cyt c reaches the native state by a sequential folding mechanism. Using the ensembles of structures along the folding pathways, we show that compaction and the sphericity of Cyt c change dramatically from the prolate ellipsoid shape in the unfolded state to the spherical native state. Our data, which are in unprecedented quantitative agreement with all aspects of time-resolved SAXS experiments, show that hydrophobic collapse and amide group protection coincide on the 100 microseconds time scale, which is in accordance with ultrafast hydrogen/deuterium exchange studies. Based on these results, we propose that compaction of polypeptide chains, accompanied by dramatic shape changes, is a universal characteristic of globular proteins, regardless of the underlying folding mechanism.


Cytochromes c , Protein Folding , Cytochromes c/metabolism , Kinetics , Scattering, Small Angle , X-Ray Diffraction
19.
Nucleic Acids Res ; 48(13): 7018-7026, 2020 07 27.
Article En | MEDLINE | ID: mdl-32542319

Probing the role of surface structure in electrostatic interactions, we report the first observation of sequence-dependent dsDNA condensation by divalent alkaline earth metal cations. Disparate behaviors were found between two repeating sequences with 100% AT content, a poly(A)-poly(T) duplex (AA-TT) and a poly(AT)-poly(TA) duplex (AT-TA). While AT-TA exhibits non-distinguishable behaviors from random-sequence genomic DNA, AA-TT condenses in all alkaline earth metal ions. We characterized these interactions experimentally and investigated the underlying principles using computer simulations. Both experiments and simulations demonstrate that AA-TT condensation is driven by non-specific ion-DNA interactions. Detailed analyses reveal sequence-enhanced major groove binding (SEGB) of point-charged alkali ions as the major difference between AA-TT and AT-TA, which originates from the continuous and close stacking of nucleobase partial charges. These SEGB cations elicit attraction via spatial juxtaposition with the phosphate backbone of neighboring helices, resulting in an azimuthal angular shift between apposing helices. Our study thus presents a distinct mechanism in which, sequence-directed surface motifs act with cations non-specifically to enact sequence-dependent behaviors. This physical insight allows a renewed understanding of the role of repeating sequences in genome organization and regulation and offers a facile approach for DNA technology to control the assembly process of nanostructures.


Cations, Divalent/chemistry , DNA/chemistry , Nucleic Acid Conformation , Animals , Biophysical Phenomena , Molecular Dynamics Simulation , Salmon , Static Electricity
20.
J Struct Biol ; 208(1): 1-6, 2019 10 01.
Article En | MEDLINE | ID: mdl-31279069

Cryo-electron microscopy (cryo-EM) is becoming a method of choice for describing native conformations of biomolecular complexes at high resolution. The rapid growth of cryo-EM in recent years has created a high demand for automated solutions, both in hardware and software. Flexible fitting of atomic models to three-dimensional (3D) cryo-EM reconstructions by molecular dynamics (MD) simulation is a popular technique but often requires technical expertise in computer simulation. This work introduces cryo_fit, a package for the automatic flexible fitting of atomic models in cryo-EM maps using MD simulation. The package is integrated with the Phenix software suite. The module was designed to automate the multiple steps of MD simulation in a reproducible manner, as well as facilitate refinement and validation through Phenix. Through the use of cryo_fit, scientists with little experience in MD simulation can produce high quality atomic models automatically and better exploit the potential of cryo-EM.


Cryoelectron Microscopy/methods , Software , Molecular Dynamics Simulation , Protein Conformation
...