Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
EMBO Rep ; 24(5): e57162, 2023 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-36951170

RESUMEN

Throughout the SARS-CoV-2 pandemic, limited diagnostic capacities prevented sentinel testing, demonstrating the need for novel testing infrastructures. Here, we describe the setup of a cost-effective platform that can be employed in a high-throughput manner, which allows surveillance testing as an acute pandemic control and preparedness tool, exemplified by SARS-CoV-2 diagnostics in an academic environment. The strategy involves self-sampling based on gargling saline, pseudonymized sample handling, automated RNA extraction, and viral RNA detection using a semiquantitative multiplexed colorimetric reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay with an analytical sensitivity comparable with RT-qPCR. We provide standard operating procedures and an integrated software solution for all workflows, including sample logistics, analysis by colorimetry or sequencing, and communication of results. We evaluated factors affecting the viral load and the stability of gargling samples as well as the diagnostic sensitivity of the RT-LAMP assay. In parallel, we estimated the economic costs of setting up and running the test station. We performed > 35,000 tests, with an average turnover time of < 6 h from sample arrival to result announcement. Altogether, our work provides a blueprint for fast, sensitive, scalable, cost- and labor-efficient RT-LAMP diagnostics, which is independent of potentially limiting clinical diagnostics supply chains.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , COVID-19/epidemiología , Prueba de COVID-19 , Técnicas de Laboratorio Clínico/métodos , Pandemias/prevención & control , Sensibilidad y Especificidad , ARN Viral/genética
2.
Trials ; 22(1): 656, 2021 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-34565421

RESUMEN

BACKGROUND: To achieve higher effectiveness in population-based SARS-CoV-2 surveillance and to reliably predict the course of an outbreak, screening, and monitoring of infected individuals without major symptoms (about 40% of the population) will be necessary. While current testing capacities are also used to identify such asymptomatic cases, this rather passive approach is not suitable in generating reliable population-based estimates of the prevalence of asymptomatic carriers to allow any dependable predictions on the course of the pandemic. METHODS: This trial implements a two-factorial, randomized, controlled, multi-arm, prospective, interventional, single-blinded design with cluster sampling and four study arms, each representing a different SARS-CoV-2 testing and surveillance strategy based on individuals' self-collection of saliva samples which are then sent to and analyzed by a laboratory. The targeted sample size for the trial is 10,000 saliva samples equally allocated to the four study arms (2500 participants per arm). Strategies differ with respect to tested population groups (individuals vs. all household members) and testing approach (without vs. with pre-screening survey). The trial is complemented by an economic evaluation and qualitative assessment of user experiences. Primary outcomes include costs per completely screened person, costs per positive case, positive detection rate, and precision of positive detection rate. DISCUSSION: Systems for active surveillance of the general population will gain more importance in the context of pandemics and related disease prevention efforts. The pandemic parameters derived from such active surveillance with routine population monitoring therefore not only enable a prospective assessment of the short-term course of a pandemic, but also a more targeted and thus more effective use of local and short-term countermeasures. TRIAL REGISTRATION: ClinicalTrials.gov DRKS00023271 . Registered November 30, 2020, with the German Clinical Trials Register (Deutsches Register Klinischer Studien).


Asunto(s)
COVID-19 , SARS-CoV-2 , Prueba de COVID-19 , Análisis Costo-Beneficio , Humanos , Grupos de Población , Estudios Prospectivos , Ensayos Clínicos Controlados Aleatorios como Asunto , Resultado del Tratamiento
3.
Mol Cell ; 81(11): 2460-2476.e11, 2021 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-33974913

RESUMEN

Selective protein degradation by the ubiquitin-proteasome system (UPS) is involved in all cellular processes. However, the substrates and specificity of most UPS components are not well understood. Here we systematically characterized the UPS in Saccharomyces cerevisiae. Using fluorescent timers, we determined how loss of individual UPS components affects yeast proteome turnover, detecting phenotypes for 76% of E2, E3, and deubiquitinating enzymes. We exploit this dataset to gain insights into N-degron pathways, which target proteins carrying N-terminal degradation signals. We implicate Ubr1, an E3 of the Arg/N-degron pathway, in targeting mitochondrial proteins processed by the mitochondrial inner membrane protease. Moreover, we identify Ylr149c/Gid11 as a substrate receptor of the glucose-induced degradation-deficient (GID) complex, an E3 of the Pro/N-degron pathway. Our results suggest that Gid11 recognizes proteins with N-terminal threonines, expanding the specificity of the GID complex. This resource of potential substrates and relationships between UPS components enables exploring functions of selective protein degradation.


Asunto(s)
Proteínas Mitocondriales/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Ubiquitina-Proteína Ligasas/genética , Perfilación de la Expresión Génica , Regulación Fúngica de la Expresión Génica , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Proteínas Mitocondriales/clasificación , Proteínas Mitocondriales/metabolismo , Transporte de Proteínas , Proteolisis , Proteómica/métodos , Saccharomyces cerevisiae/enzimología , Proteínas de Saccharomyces cerevisiae/metabolismo , Treonina/metabolismo , Ubiquitina/genética , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/clasificación , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación , Proteína Fluorescente Roja
4.
Bio Protoc ; 11(6): e3964, 2021 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-33855122

RESUMEN

During pandemics, such as the one caused by SARS-CoV-2 coronavirus, simple methods to rapidly test large numbers of people are needed. As a faster and less resource-demanding alternative to detect viral RNA by conventional qPCR, we used reverse transcription loop-mediated isothermal amplification (RT-LAMP). We previously established colorimetric RT-LAMP assays on both purified and unpurified SARS-CoV-2 clinical specimens and further developed a multiplexed sequencing protocol (LAMP-sequencing) to analyze the outcome of many RT-LAMP reactions at the same time (Dao Thi et al., 2020). Extending on this work, we hereby provide step-by-step protocols for both RT-LAMP assays and read-outs.

5.
Trials ; 22(1): 39, 2021 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-33419461

RESUMEN

OBJECTIVES: In this cluster-randomised controlled study (CoV-Surv Study), four different "active" SARS-CoV-2 testing strategies for general population surveillance are evaluated for their effectiveness in determining and predicting the prevalence of SARS-CoV-2 infections in a given population. In addition, the costs and cost-effectiveness of the four surveillance strategies will be assessed. Further, this trial is supplemented by a qualitative component to determine the acceptability of each strategy. Findings will inform the choice of the most effective, acceptable and affordable strategy for SARS-CoV-2 surveillance, with the most effective and cost-effective strategy becoming part of the local public health department's current routine health surveillance activities. Investigating its everyday performance will allow us to examine the strategy's applicability to real time prevalence prediction and the usefulness of the resulting information for local policy makers to implement countermeasures that effectively prevent future nationwide lockdowns. The authors would like to emphasize the importance and relevance of this study and its expected findings in the context of population-based disease surveillance, especially in respect to the current SARS-CoV-2 pandemic. In Germany, but also in many other countries, COVID-19 surveillance has so far largely relied on passive surveillance strategies that identify individuals with clinical symptoms, monitor those cases who then tested positive for the virus, followed by tracing of individuals in close contact to those positive cases. To achieve higher effectiveness in population surveillance and to reliably predict the course of an outbreak, screening and monitoring of infected individuals without major symptoms (about 40% of the population) will be necessary. While current testing capacities are also used to identify such asymptomatic cases, this rather passive approach is not suitable in generating reliable population-based estimates of the prevalence of asymptomatic carriers to allow any dependable predictions on the course of the pandemic. To better control and manage the SARS-CoV-2 pandemic, current strategies therefore need to be complemented by an active surveillance of the wider population, i.e. routinely conducted testing and monitoring activities to identify and isolate infected individuals regardless of their clinical symptoms. Such active surveillance strategies will enable more effective prevention of the spread of the virus as they can generate more precise population-based parameters during a pandemic. This essential information will be required in order to determine the best strategic and targeted short-term countermeasures to limit infection spread locally. TRIAL DESIGN: This trial implements a cluster-randomised, two-factorial controlled, prospective, interventional, single-blinded design with four study arms, each representing a different SARS-CoV-2 testing and surveillance strategy. PARTICIPANTS: Eligible are individuals age 7 years or older living in Germany's Rhein-Neckar Region who consent to provide a saliva sample (all four arms) after completion of a brief questionnaire (two arms only). For the qualitative component, different samples of study participants and non-participants (i.e. eligible for study, but refuse to participate) will be identified for additional interviews. For these interviews, only individuals age 18 years or older are eligible. INTERVENTION AND COMPARATOR: Of the four surveillance strategies to be assessed and compared, Strategy A1 is considered the gold standard for prevalence estimation and used to determine bias in other arms. To determine the cost-effectiveness, each strategy is compared to status quo, defined as the currently practiced passive surveillance approach. Strategy A1: Individuals (one per household) receive information and study material by mail with instructions on how to produce a saliva sample and how to return the sample by mail. Once received by the laboratory, the sample is tested for SARS-CoV-2 using Reverse Transcription Loop-mediated Isothermal Amplification (RT-LAMP). Strategy A2: Individuals (one per household) receive information and study material by mail with instructions on how to produce their own as well as saliva samples from each household member and how to return these samples by mail. Once received by the laboratory, the samples are tested for SARS-CoV-2 using RT-LAMP. Strategy B1: Individuals (one per household) receive information by mail on how to complete a brief pre-screening questionnaire which asks about COVID-19 related clinical symptoms and risk exposures. Only individuals whose pre-screening score crosses a defined threshold, will then receive additional study material by mail with instructions on how to produce a saliva sample and how to return the sample by mail. Once received by the laboratory, the saliva sample is tested for SARS-CoV-2 using RT-LAMP. Strategy B2: Individuals (one per household) receive information by mail on how to complete a brief pre-screening questionnaire which asks about COVID-19 related clinical symptoms. Only individuals whose pre-screening score crosses a defined threshold, will then receive additional study material by mail with instructions how to produce their own as well as saliva samples from each household member and how to return these samples by mail. Once received by the laboratory, the samples are tested for SARS-CoV-2 using RT-LAMP. In each strategy, RT-LAMP positive samples are additionally analyzed with qPCR in order to minimize the number of false positives. MAIN OUTCOMES: The identification of the one best strategy will be determined by a set of parameters. Primary outcomes include costs per correctly screened person, costs per positive case, positive detection rate, and precision of positive detection rate. Secondary outcomes include participation rate, costs per asymptomatic case, prevalence estimates, number of asymptomatic cases per study arm, ratio of symptomatic to asymptomatic cases per study arm, participant satisfaction. Additional study components (not part of the trial) include cost effectiveness of each of the four surveillance strategies compared to passive monitoring (i.e. status quo), development of a prognostic model to predict hospital utilization caused by SARS-CoV-2, time from test shipment to test application and time from test shipment to test result, and perception and preferences of the persons to be tested with regard to test strategies. RANDOMISATION: Samples are drawn in three batches of three continuous weeks. Randomisation follows a two-stage process. First, a total of 220 sampling points have been allocated to the three different batches. To obtain an integer solution, the Cox-algorithm for controlled rounding has been used. Afterwards, sample points have been drawn separately per batch, following a probability proportional to size (PPS) random sample. Second, for each cluster the same number of residential addresses is randomly sampled from the municipal registries (self-weighted sample of individuals). The 28,125 addresses drawn per municipality are then randomly allocated to the four study arms A1, A2, B1, and B2 in the ratio 5 to 2.5 to 14 to 7 based on the expected response rates in each arm and the sensitivity and specificity of the pre-screening tool as applied in strategy B1 and B2. Based on the assumptions, this allocation should yield 2500 saliva samples in each strategy. Although a municipality can be sampled by multiple batches and the overall number of addresses per municipality might vary, the number of addresses contacted in each arm is kept constant. BLINDING (MASKING): The design is single-blinded, meaning the staff conducting the SARS-CoV-2 tests are unaware of the study arm assignment of each single participant and test sample. SAMPLE SIZES: Total sample size for the trial is 10,000 saliva samples equally allocated to the four study arms (i.e. 2,500 participants per arm). For the qualitative component, up to 60 in-depth interviews will be conducted with about 30 study participants (up to 15 in each arm A and B) and 30 participation refusers (up to 15 in each arm A and B) purposefully selected from the quantitative study sample to represent a variety of gender and ages to explore experiences with admission or rejection of study participation. Up to 25 asymptomatic SARS-CoV-2 positive study participants will be purposefully selected to explore the way in which asymptomatic men and women diagnosed with SARS-CoV-2 give meaning to their diagnosis and to the dialectic between feeling concurrently healthy and yet also being at risk for transmitting COVID-19. In addition, 100 randomly selected study participants will be included to explore participants' perspective on testing processes and implementation. TRIAL STATUS: Final protocol version is "Surveillance_Studienprotokoll_03Nov2020_v1_2" from November 3, 2020. Recruitment started November 18, 2020 and is expected to end by or before December 31, 2020. TRIAL REGISTRATION: The trial is currently being registered with the German Clinical Trials Register (Deutsches Register Klinischer Studien), DRKS00023271 ( https://www.drks.de/drks_web/navigate.do?navigationId=trial . HTML&TRIAL_ID=DRKS00023271). Retrospectively registered 30 November 2020. FULL PROTOCOL: The full protocol is attached as an additional file, accessible from the Trials website (Additional file 1). In the interest in expediting dissemination of this material, the familiar formatting has been eliminated; this Letter serves as a summary of the key elements of the full protocol.


Asunto(s)
Prueba de Ácido Nucleico para COVID-19/economía , COVID-19/diagnóstico , COVID-19/economía , Costos de la Atención en Salud , Técnicas de Diagnóstico Molecular/economía , Técnicas de Amplificación de Ácido Nucleico/economía , SARS-CoV-2/genética , Saliva/virología , Encuestas y Cuestionarios/economía , COVID-19/epidemiología , COVID-19/virología , Análisis Costo-Beneficio , Femenino , Alemania/epidemiología , Humanos , Masculino , Vigilancia de la Población , Valor Predictivo de las Pruebas , Prevalencia , Ensayos Clínicos Controlados Aleatorios como Asunto , Reproducibilidad de los Resultados , Método Simple Ciego
6.
Nat Commun ; 11(1): 5508, 2020 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-33139726

RESUMEN

The ubiquitous redox coenzyme nicotinamide adenine dinucleotide (NAD) acts as a non-canonical cap structure on prokaryotic and eukaryotic ribonucleic acids. Here we find that in budding yeast, NAD-RNAs are abundant (>1400 species), short (<170 nt), and mostly correspond to mRNA 5'-ends. The modification percentage of transcripts is low (<5%). NAD incorporation occurs mainly during transcription initiation by RNA polymerase II, which uses distinct promoters with a YAAG core motif for this purpose. Most NAD-RNAs are 3'-truncated. At least three decapping enzymes, Rai1, Dxo1, and Npy1, guard against NAD-RNA at different cellular locations, targeting overlapping transcript populations. NAD-mRNAs are not translatable in vitro. Our work indicates that in budding yeast, most of the NAD incorporation into RNA seems to be disadvantageous to the cell, which has evolved a diverse surveillance machinery to prematurely terminate, decap and reject NAD-RNAs.


Asunto(s)
Endorribonucleasas/metabolismo , NAD/metabolismo , Caperuzas de ARN/metabolismo , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/genética , Regiones no Traducidas 5' , Núcleo Celular/genética , Pirofosfatasas/metabolismo , Estabilidad del ARN , Proteínas de Unión al ARN/metabolismo , Ribosomas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcripción Genética
7.
Viruses ; 12(8)2020 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-32784757

RESUMEN

Rapid large-scale testing is essential for controlling the ongoing pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The standard diagnostic pipeline for testing SARS-CoV-2 presence in patients with an ongoing infection is predominantly based on pharyngeal swabs, from which the viral RNA is extracted using commercial kits, followed by reverse transcription and quantitative PCR detection. As a result of the large demand for testing, commercial RNA extraction kits may be limited and, alternatively, non-commercial protocols are needed. Here, we provide a magnetic bead RNA extraction protocol that is predominantly based on in-house made reagents and is performed in 96-well plates supporting large-scale testing. Magnetic bead RNA extraction was benchmarked against the commercial QIAcube extraction platform. Comparable viral RNA detection sensitivity and specificity were obtained by fluorescent and colorimetric reverse transcription loop-mediated isothermal amplification (RT-LAMP) using a primer set targeting the N gene, as well as RT-qPCR using a primer set targeting the E gene, showing that the RNA extraction protocol presented here can be combined with a variety of detection methods at high throughput. Importantly, the presented diagnostic workflow can be quickly set up in a laboratory without access to an automated pipetting robot.


Asunto(s)
Betacoronavirus/química , Betacoronavirus/genética , Técnicas de Laboratorio Clínico/métodos , Infecciones por Coronavirus/virología , Neumonía Viral/virología , ARN Viral/aislamiento & purificación , Betacoronavirus/aislamiento & purificación , COVID-19 , Prueba de COVID-19 , Infecciones por Coronavirus/diagnóstico , Humanos , Fenómenos Magnéticos , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificación de Ácido Nucleico/métodos , Pandemias , Neumonía Viral/diagnóstico , ARN Viral/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Transcripción Reversa , SARS-CoV-2 , Sensibilidad y Especificidad
8.
Sci Transl Med ; 12(556)2020 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-32719001

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic caused by the SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) coronavirus is a major public health challenge. Rapid tests for detecting existing SARS-CoV-2 infections and assessing virus spread are critical. Approaches to detect viral RNA based on reverse transcription loop-mediated isothermal amplification (RT-LAMP) have potential as simple, scalable, and broadly applicable testing methods. Compared to RT quantitative polymerase chain reaction (RT-qPCR)-based methods, RT-LAMP assays require incubation at a constant temperature, thus eliminating the need for sophisticated instrumentation. Here, we tested a two-color RT-LAMP assay protocol for detecting SARS-CoV-2 viral RNA using a primer set specific for the N gene. We tested our RT-LAMP assay on surplus RNA samples isolated from 768 pharyngeal swab specimens collected from individuals being tested for COVID-19. We determined the sensitivity and specificity of the RT-LAMP assay for detecting SARS-CoV-2 viral RNA. Compared to an RT-qPCR assay using a sensitive primer set, we found that the RT-LAMP assay reliably detected SARS-CoV-2 RNA with an RT-qPCR cycle threshold (CT) number of up to 30, with a sensitivity of 97.5% and a specificity of 99.7%. We also developed a swab-to-RT-LAMP assay that did not require a prior RNA isolation step, which retained excellent specificity (99.5%) but showed lower sensitivity (86% for CT < 30) than the RT-LAMP assay. In addition, we developed a multiplexed sequencing protocol (LAMP-sequencing) as a diagnostic validation procedure to detect and record the outcome of RT-LAMP reactions.


Asunto(s)
Betacoronavirus/genética , Betacoronavirus/aislamiento & purificación , Infecciones por Coronavirus/diagnóstico , Infecciones por Coronavirus/virología , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificación de Ácido Nucleico/métodos , Neumonía Viral/diagnóstico , Neumonía Viral/virología , COVID-19 , Colorimetría/métodos , Colorimetría/estadística & datos numéricos , Infecciones por Coronavirus/epidemiología , Proteínas de la Nucleocápside de Coronavirus , Humanos , Técnicas de Diagnóstico Molecular/estadística & datos numéricos , Técnicas de Amplificación de Ácido Nucleico/estadística & datos numéricos , Proteínas de la Nucleocápside/genética , Pandemias , Fosfoproteínas , Neumonía Viral/epidemiología , ARN Viral/genética , ARN Viral/aislamiento & purificación , RNA-Seq , SARS-CoV-2 , Sensibilidad y Especificidad , Investigación Biomédica Traslacional
9.
J Cell Biol ; 219(6)2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32406907

RESUMEN

Here we describe a time-efficient strategy for endogenous C-terminal gene tagging in mammalian tissue culture cells. An online platform is used to design two long gene-specific oligonucleotides for PCR with generic template cassettes to create linear dsDNA donors, termed PCR cassettes. PCR cassettes encode the tag (e.g., GFP), a Cas12a CRISPR RNA for cleavage of the target locus, and short homology arms for directed integration via homologous recombination. The integrated tag is coupled to a generic terminator shielding the tagged gene from the co-inserted auxiliary sequences. Co-transfection of PCR cassettes with a Cas12a-encoding plasmid leads to robust endogenous expression of tagged genes, with tagging efficiency of up to 20% without selection, and up to 60% when selection markers are used. We used target-enrichment sequencing to investigate all potential sources of artifacts. Our work outlines a quick strategy particularly suitable for exploratory studies using endogenous expression of fluorescent protein-tagged genes.


Asunto(s)
Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Marcación de Gen/métodos , Reacción en Cadena de la Polimerasa/métodos , Alelos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Asociadas a CRISPR/genética , Proteínas Asociadas a CRISPR/metabolismo , Línea Celular , Células Cultivadas , Endodesoxirribonucleasas/genética , Endodesoxirribonucleasas/metabolismo , Genes Reporteros , Secuenciación de Nucleótidos de Alto Rendimiento , Recombinación Homóloga , Humanos , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Oligonucleótidos/genética , ARN Guía de Kinetoplastida/genética , Transfección
10.
Nat Commun ; 10(1): 2960, 2019 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-31273196

RESUMEN

Clone collections of modified strains ("libraries") are a major resource for systematic studies with the yeast Saccharomyces cerevisiae. Construction of such libraries is time-consuming, costly and confined to the genetic background of a specific yeast strain. To overcome these limitations, we present CRISPR-Cas12a (Cpf1)-assisted tag library engineering (CASTLING) for multiplexed strain construction. CASTLING uses microarray-synthesized oligonucleotide pools and in vitro recombineering to program the genomic insertion of long DNA constructs via homologous recombination. One simple transformation yields pooled libraries with >90% of correctly tagged clones. Up to several hundred genes can be tagged in a single step and, on a genomic scale, approximately half of all genes are tagged with only ~10-fold oversampling. We report several parameters that affect tagging success and provide a quantitative targeted next-generation sequencing method to analyze such pooled collections. Thus, CASTLING unlocks avenues for increasing throughput in functional genomics and cell biology research.


Asunto(s)
Sistemas CRISPR-Cas/genética , Técnicas Genéticas , Saccharomyces cerevisiae/genética , Células Clonales , Biblioteca de Genes , Ingeniería Genética , Genoma Fúngico , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Nucleares/metabolismo
11.
Mol Syst Biol ; 14(9): e8355, 2018 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-30181144

RESUMEN

Embryogenesis relies on instructions provided by spatially organized signaling molecules known as morphogens. Understanding the principles behind morphogen distribution and how cells interpret locally this information remains a major challenge in developmental biology. Here, we introduce morphogen-age measurements as a novel approach to test models of morphogen gradient formation. Using a tandem fluorescent timer as a protein age sensor, we find a gradient of increasing age of Bicoid along the anterior-posterior axis in the early Drosophila embryo. Quantitative analysis of the protein age distribution across the embryo reveals that the synthesis-diffusion-degradation model is the most likely model underlying Bicoid gradient formation, and rules out other hypotheses for gradient formation. Moreover, we show that the timer can detect transitions in the dynamics associated with syncytial cellularization. Our results provide new insight into Bicoid gradient formation and demonstrate how morphogen-age information can complement knowledge about movement, abundance, and distribution, which should be widely applicable to other systems.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Embrión no Mamífero/metabolismo , Técnica del Anticuerpo Fluorescente/métodos , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Imagen Óptica/métodos , Transactivadores/genética , Animales , Tipificación del Cuerpo/genética , Proteínas de Drosophila/biosíntesis , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/metabolismo , Embrión no Mamífero/citología , Embrión no Mamífero/diagnóstico por imagen , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas de Homeodominio/biosíntesis , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Estabilidad Proteica , Transporte de Proteínas , Proteolisis , Transducción de Señal , Transactivadores/biosíntesis , Proteína Fluorescente Roja
12.
Nat Methods ; 15(8): 598-600, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29988096

RESUMEN

Here we describe a C-SWAT library for high-throughput tagging of Saccharomyces cerevisiae open reading frames (ORFs). In 5,661 strains, we inserted an acceptor module after each ORF that can be efficiently replaced with tags or regulatory elements. We validated the library with targeted sequencing and tagged the proteome with bright fluorescent proteins to quantify the effect of heterologous transcription terminators on protein expression and to localize previously undetected proteins.


Asunto(s)
Genoma Fúngico , Biblioteca Genómica , Saccharomyces cerevisiae/genética , ADN de Hongos/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Sistemas de Lectura Abierta , Proteoma/genética , Proteómica , Proteínas de Saccharomyces cerevisiae/genética , Análisis de Secuencia de ADN , Lugares Marcados de Secuencia
13.
Nucleic Acids Res ; 45(19): 11144-11158, 2017 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-28977638

RESUMEN

Pervasive transcription of genomes generates multiple classes of non-coding RNAs. One of these classes are stable long non-coding RNAs which overlap coding genes in antisense direction (asRNAs). The function of such asRNAs is not fully understood but several cases of antisense-dependent gene expression regulation affecting the overlapping genes have been demonstrated. Using high-throughput yeast genetics and a limited set of four growth conditions we previously reported a regulatory function for ∼25% of asRNAs, most of which repress the expression of the sense gene. To further explore the roles of asRNAs we tested more conditions and identified 15 conditionally antisense-regulated genes, 6 of which exhibited antisense-dependent enhancement of gene expression. We focused on the sporulation-specific gene SPS100, which becomes upregulated upon entry into starvation or sporulation as a function of the antisense transcript SUT169. We demonstrate that the antisense effect is mediated by its 3' intergenic region (3'-IGR) and that this regulation can be transferred to other genes. Genetic analysis revealed that SUT169 functions by changing the relative expression of SPS100 mRNA isoforms from a short and unstable transcript to a long and stable species. These results suggest a novel mechanism of antisense-dependent gene regulation via mRNA isoform switching.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Isoformas de ARN/genética , ARN sin Sentido/genética , Proteínas de Saccharomyces cerevisiae/genética , Regulación hacia Arriba , Immunoblotting , Microscopía Fluorescente , Estabilidad del ARN/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Esporas Fúngicas/genética , Esporas Fúngicas/metabolismo , Imagen de Lapso de Tiempo/métodos
14.
J Cell Biol ; 216(8): 2425-2442, 2017 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-28659328

RESUMEN

The spindle pole body (SPB) of budding yeast duplicates once per cell cycle. In G1, the satellite, an SPB precursor, assembles next to the mother SPB (mSPB) on the cytoplasmic side of the nuclear envelope (NE). How the growing satellite subsequently inserts into the NE is an open question. To address this, we have uncoupled satellite growth from NE insertion. We show that the bridge structure that separates the mSPB from the satellite is a distance holder that prevents deleterious fusion of both structures. Binding of the γ-tubulin receptor Spc110 to the central plaque from within the nucleus is important for NE insertion of the new SPB. Moreover, we provide evidence that a nuclear pore complex associates with the duplicating SPB and helps to insert the SPB into the NE. After SPB insertion, membrane-associated proteins including the conserved Ndc1 encircle the SPB and retain it within the NE. Thus, uncoupling SPB growth from NE insertion unmasks functions of the duplication machinery.


Asunto(s)
Ciclo Celular , Membrana Nuclear/metabolismo , Poro Nuclear/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Cuerpos Polares del Huso/metabolismo , Proteínas de Unión a Calmodulina , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Genotipo , Microscopía Electrónica de Transmisión , Microscopía Fluorescente , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Mutación , Membrana Nuclear/genética , Membrana Nuclear/ultraestructura , Poro Nuclear/genética , Poro Nuclear/ultraestructura , Proteínas de Complejo Poro Nuclear/genética , Proteínas de Complejo Poro Nuclear/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fenotipo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Transporte de Proteínas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/genética , Cuerpos Polares del Huso/genética , Cuerpos Polares del Huso/ultraestructura , Factores de Tiempo , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo
15.
Nature ; 516(7531): 410-3, 2014 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-25519137

RESUMEN

The nuclear envelope is a double membrane that separates the nucleus from the cytoplasm. The inner nuclear membrane (INM) functions in essential nuclear processes including chromatin organization and regulation of gene expression. The outer nuclear membrane is continuous with the endoplasmic reticulum and is the site of membrane protein synthesis. Protein homeostasis in this compartment is ensured by endoplasmic-reticulum-associated protein degradation (ERAD) pathways that in yeast involve the integral membrane E3 ubiquitin ligases Hrd1 and Doa10 operating with the E2 ubiquitin-conjugating enzymes Ubc6 and Ubc7 (refs 2, 3). However, little is known about protein quality control at the INM. Here we describe a protein degradation pathway at the INM in yeast (Saccharomyces cerevisiae) mediated by the Asi complex consisting of the RING domain proteins Asi1 and Asi3 (ref. 4). We report that the Asi complex functions together with the ubiquitin-conjugating enzymes Ubc6 and Ubc7 to degrade soluble and integral membrane proteins. Genetic evidence suggests that the Asi ubiquitin ligase defines a pathway distinct from, but complementary to, ERAD. Using unbiased screening with a novel genome-wide yeast library based on a tandem fluorescent protein timer, we identify more than 50 substrates of the Asi, Hrd1 and Doa10 E3 ubiquitin ligases. We show that the Asi ubiquitin ligase is involved in degradation of mislocalized integral membrane proteins, thus acting to maintain and safeguard the identity of the INM.


Asunto(s)
Membrana Nuclear/enzimología , Saccharomyces cerevisiae/enzimología , Degradación Asociada con el Retículo Endoplásmico/fisiología , Proteínas de la Membrana/metabolismo , Membrana Nuclear/metabolismo , Transporte de Proteínas/fisiología , Proteolisis , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...