Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 16 de 16
1.
Clin Transl Sci ; 16(8): 1352-1358, 2023 08.
Article En | MEDLINE | ID: mdl-37415296

The risk of severe adverse events related to thiopurine therapy can be reduced by personalizing dosing based on TPMT and NUDT15 genetic polymorphisms. However, the optimal genetic testing platform has not yet been established. In this study, we report on the TPMT and NUDT15 genotypes and phenotypes generated from 320 patients from a multicenter pediatric healthcare system using both Sanger sequencing and polymerase chain reaction genotyping (hereafter: genotyping) methods to determine the appropriateness of genotyping in our patient population. Sanger sequencing identified variant TPMT alleles including *3A (8, 3.2% of alleles), *3C (4, 1.6%), and *2 (1, 0.4%), and NUDT15 alleles including *2 (5, 3.6%) and *3 (1, 0.7%). For genotyped patients, variants identified in TPMT included *3A (12, 3.1%), *3C (4, 1%), *2 (2, 0.5%), and *8 (1, 0.25%), whereas NUDT15 included *4 (2, 1.9%) and *2 or *3 (1, 1%). Between Sanger sequencing and genotyping, no significant difference in allele, genotype, or phenotype frequency was identified for either TPMT or NUDT15. All patients who were tested using Sanger sequencing would have been accurately phenotyped for either TPMT (124/124), NUDT15 (69/69), or both genes (68/68) if they were assayed using the genotyping method. Considering 193 total TPMT and NUDT15 Sanger Sequencing tests reviewed, all tests would have resulted in an appropriate clinical recommendation if the test had instead been conducted using the comparison genotyping platforms. These results suggest that, in this study population, genotyping would be sufficient to provide accurate phenotype calls and clinical recommendations.


Azathioprine , Polymorphism, Genetic , Humans , Azathioprine/adverse effects , Genetic Testing , Genotype , Genotyping Techniques
3.
J Clin Endocrinol Metab ; 106(10): 2915-2937, 2021 09 27.
Article En | MEDLINE | ID: mdl-34125233

CONTEXT: Idiopathic infantile hypercalcemia (IIH), an uncommon disorder characterized by elevated serum concentrations of 1,25 dihydroxyvitamin D (1,25(OH)2D) and low parathyroid hormone (PTH) levels, may present with mild to severe hypercalcemia during the first months of life. Biallelic variants in the CYP24A1 or SLC34A1 genes are associated with severe IIH. Little is known about milder forms. OBJECTIVE: This work aims to characterize the genetic associations and biochemical profile of mild IIH. METHODS: This is a cross-sectional study including children between age 6 months and 17 years with IIH who were followed in the Calcium Clinic at the Hospital for Sick Children (SickKids), Toronto, Canada. Twenty children with mild IIH on calcium-restricted diets were evaluated. We performed a dietary assessment and analyzed biochemical measures including vitamin D metabolites and performed a stepwise molecular genetic analysis. Complementary biochemical assessments and renal ultrasounds were offered to first-degree family members of positive probands. RESULTS: The median age was 16 months. Median serum levels of calcium (2.69 mmol/L), urinary calcium:creatinine ratio (0.72 mmol/mmol), and 1,25(OH)2D (209 pmol/L) were elevated, whereas intact PTH was low normal (22.5 ng/L). Mean 1,25(OH)2D/PTH and 1,25(OH)2D/25(OH)D ratios were increased by comparison to healthy controls. Eleven individuals (55%) had renal calcification. Genetic variants were common (65%), with the majority being heterozygous variants in SLC34A1 and SLC34A3, while a minority showed variants of CYP24A1 and other genes related to hypercalciuria. CONCLUSION: The milder form of IIH has a distinctive vitamin D metabolite profile and is primarily associated with heterozygous SLC34A1 and SLC34A3 variants.


Hypercalcemia/genetics , Parathyroid Hormone/blood , Sodium-Phosphate Cotransporter Proteins, Type IIa/genetics , Sodium-Phosphate Cotransporter Proteins, Type IIc/genetics , Vitamin D/analogs & derivatives , Adolescent , Calcium/blood , Calcium/urine , Child , Child, Preschool , Creatinine/urine , Cross-Sectional Studies , Female , Genetic Variation , Heterozygote , Humans , Hypercalcemia/blood , Hypercalcemia/urine , Infant , Male , Vitamin D/blood , Vitamin D3 24-Hydroxylase/genetics
4.
Dela J Public Health ; 7(5): 24-27, 2021 Dec.
Article En | MEDLINE | ID: mdl-35619972

Chronic kidney disease (CKD) has major morbidity and mortality for children and adults. While in adults CKD often is associated with diabetic complications, genetic variants can be the underlying cause in both populations. Beginning in 2016 with the emergence of more affordable next-generation sequencing (NGS) technologies, the Molecular Diagnostics Lab at Nemours Children's Hospital-Delaware developed the first clinically actionable pediatric NGS kidney panel comprised of 46 genes including APOL1. Apolipoprotein L1 (APOL1) associated nephropathy is reported along a spectrum of non-diabetic kidney disease. It is significantly associated with two "risk alleles" defined as G1 and G2 and typically found in individuals of African descent. In early 2020, as COVID-19 spread across the globe, reports of patients with kidney failure began to emerge. A collapsing glomerulopathy in Black patients with COVID-19 was found to be associated with the APOL1 predisposition of the known G1 and/or G2 risk variants. We identified genetic variants in 11 genes (NPHS1; NPHS2; LAMB2; WT1; COL4A4; COL4A5; COQ8B; CUBN; MEFV; PMM2; SMARCAL1) known to be associated with pediatric onset nephrotic syndrome, or detection of the high-risk haplotype of APOL1, in the majority (78%) of patients tested. These clinically actionable results guided medical care and improved patient outcomes.

5.
Am J Med Genet A ; 182(8): 1906-1912, 2020 08.
Article En | MEDLINE | ID: mdl-32573057

Leukodystrophies are a heterogeneous group of heritable disorders characterized by abnormal brain white matter signal on magnetic resonance imaging (MRI) and primary involvement of the cellular components of myelin. Previous estimates suggest the incidence of leukodystrophies as a whole to be 1 in 7,000 individuals, however the frequency of specific diagnoses relative to others has not been described. Next generation sequencing approaches offer the opportunity to redefine our understanding of the relative frequency of different leukodystrophies. We assessed the relative frequency of all 30 leukodystrophies (associated with 55 genes) in more than 49,000 exomes. We identified a relatively high frequency of disorders previously thought of as very rare, including Aicardi Goutières Syndrome, TUBB4A-related leukodystrophy, Peroxisomal biogenesis disorders, POLR3-related Leukodystrophy, Vanishing White Matter, and Pelizaeus-Merzbacher Disease. Despite the relative frequency of these conditions, carrier-screening laboratories regularly test only 20 of the 55 leukodystrophy-related genes, and do not test at all, or test only one or a few, genes for some of the higher frequency disorders. Relative frequency of leukodystrophies previously considered very rare suggests these disorders may benefit from expanded carrier screening.


Autoimmune Diseases of the Nervous System/genetics , Demyelinating Diseases/genetics , Nervous System Malformations/genetics , Pelizaeus-Merzbacher Disease/genetics , RNA Polymerase III/genetics , Tubulin/genetics , Autoimmune Diseases of the Nervous System/pathology , Demyelinating Diseases/epidemiology , Demyelinating Diseases/pathology , Exome/genetics , Female , Genetic Predisposition to Disease , Heterozygote , High-Throughput Nucleotide Sequencing , Humans , Lysosomal Storage Diseases/epidemiology , Lysosomal Storage Diseases/genetics , Magnetic Resonance Imaging , Male , Myelin Sheath/genetics , Myelin Sheath/metabolism , Nervous System Malformations/pathology , Pelizaeus-Merzbacher Disease/epidemiology , Pelizaeus-Merzbacher Disease/pathology , White Matter/diagnostic imaging , White Matter/pathology
6.
Ann Clin Transl Neurol ; 7(1): 144-152, 2020 01.
Article En | MEDLINE | ID: mdl-31912665

Genetic white matter disorders have heterogeneous etiologies and overlapping clinical presentations. We performed a study of the diagnostic efficacy of genome sequencing in 41 unsolved cases with prior exome sequencing, resolving an additional 14 from an historical cohort (n = 191). Reanalysis in the context of novel disease-associated genes and improved variant curation and annotation resolved 64% of cases. The remaining diagnoses were directly attributable to genome sequencing, including cases with small and large copy number variants (CNVs) and variants in deep intronic and technically difficult regions. Genome sequencing, in combination with other methodologies, achieved a diagnostic yield of 85% in this retrospective cohort.


Leukoencephalopathies/diagnosis , Leukoencephalopathies/genetics , Registries , Whole Genome Sequencing , Adolescent , Child , Child, Preschool , Female , Humans , Leukoencephalopathies/pathology , Male , Pedigree
7.
Am J Med Genet A ; 167A(10): 2286-93, 2015 Oct.
Article En | MEDLINE | ID: mdl-26249260

Transient receptor potential cation channel, subfamily V, member 4 (TRPV4) is a polymodal modulated non-selective cation channel required for normal development and maintenance of bone and cartilage. Heterozygous mutations of this channel cause a variety of channelopathies, including metatropic dysplasia (MD). We analyzed the effect of a novel TRPV4 mutation c.2398G>A, p.Gly800Asp on intracellular calcium ([Ca(2+) ]i ) regulation in chondrocytes and compared this response to chondrocytes with a frequently observed mutation, c.2396C>T, p.Pro799Leu. We observed temperature-dependent [Ca(2+) ]i oscillations in both intact and MD chondrocytes however, MD mutations exhibited increased peak magnitudes of [Ca(2+) ]i during oscillations. We also found increased baseline [Ca(2+) ]i in MD primary cells, as well as increased [Ca(2+) ]i response to either hypotonic swelling or the TRVP4-specific agonist, GSK1016790A. Oscillations and stimulation responses were blocked with the TRPV4-specific antagonist, GSK205. Analysis of [Ca(2+) ]i response kinetics showed that MD chondrocytes had increased frequency of temperature-sensitive oscillations, and the magnitude and duration of [Ca(2+) ]i responses to given stimuli. Duration of the response of the p.Gly800Asp mutation to stimulation was greater than for the p.Pro799Leu mutation. These experiments show that this region of the channel is essential for proper [Ca(2+) ]i regulation. These studies of primary cells from patients show how both mutant and WT TRPV4 channels regulate cartilage and bone development. © 2015 Wiley Periodicals, Inc.


Calcium Signaling , Chondrocytes/metabolism , Dwarfism/genetics , Mutation , Osteochondrodysplasias/genetics , TRPV Cation Channels/genetics , Bone and Bones/metabolism , Bone and Bones/pathology , Calcium Channel Agonists/pharmacology , Calcium Channel Blockers/pharmacology , Cartilage/metabolism , Cartilage/pathology , Child, Preschool , Chondrocytes/drug effects , Chondrocytes/pathology , Dwarfism/metabolism , Dwarfism/pathology , Female , Gene Expression , Humans , Leucine/analogs & derivatives , Leucine/pharmacology , Osmotic Pressure , Osteochondrodysplasias/metabolism , Osteochondrodysplasias/pathology , Phenotype , Primary Cell Culture , Severity of Illness Index , Sulfonamides/pharmacology , TRPV Cation Channels/agonists , TRPV Cation Channels/antagonists & inhibitors , TRPV Cation Channels/metabolism
8.
Mol Genet Metab ; 111(1): 26-32, 2014 Jan.
Article En | MEDLINE | ID: mdl-24342716

Barth syndrome is caused by mutations in the TAZ (tafazzin) gene on human chromosome Xq28. The human tafazzin gene produces four major mRNA splice variants; two of which have been shown to be functional (TAZ lacking exon 5 and full-length) in complementation studies with yeast and Drosophila. This study characterizes the multiple alternative splice variants of TAZ mRNA and their proportions in blood samples from a cohort of individuals with Barth syndrome (BTHS). Because it has been reported that collection and processing methods can affect the expression of various genes, we tested and chose a stabilizing medium for collecting, shipping and processing of the blood samples of these individuals. In both healthy controls and in BTHS individuals, we found a greater variety of alternatively spliced forms than previously described, with a sizeable proportion of minor splice variants besides the four dominant isoforms. Individuals with certain exonic and intronic splice mutations produce additional mutant mRNAs that could be translated into two or more proteins with different amino acid substitutions in a single individual. A fraction of the minor splice variants is predicted to be non-productive.


Alternative Splicing , Barth Syndrome/genetics , RNA Isoforms/metabolism , RNA, Messenger/metabolism , Transcription Factors/genetics , Acyltransferases , Amino Acid Substitution , Blood Specimen Collection , Chromosomes, Human, X , Exons , Female , Humans , Introns , Male , Mutation, Missense , Protein Isoforms/genetics , Protein Isoforms/metabolism , Transcription Factors/metabolism
9.
Am J Med Genet A ; 161A(7): 1638-46, 2013 Jul.
Article En | MEDLINE | ID: mdl-23696494

The objective of our study was to characterize the influence of multiple mutations in the MECP2 gene in a cohort of individuals with Rett syndrome. Further analysis demonstrated that nearly all resulted from de novo in cis mutations, where the disease severity was indistinguishable from single mutations. Our methods involved enrolling participants in the RTT Natural History Study (NHS). After providing informed consent through their parents or principal caretakers, additional molecular assessments were performed in the participants and their parents to assess the presence and location of more than one mutation in each. Clinical severity was assessed at each visit in those participants in the NHS. Non-contiguous MECP2 gene variations were detected in 12 participants and contiguous mutations involving a deletion and insertion in three participants. Thirteen of 15 participants had mutations that were in cis; four (of 13) had three MECP2 mutations; two (of 15) had mutations that were both in cis and in trans (i.e., on different alleles). Clinical severity did not appear different from NHS participants with a single similar mutation. Mutations in cis were identified in most participants; two individuals had mutations both in cis and in trans. The presence of multiple mutations was not associated with greater severity. Nevertheless, multiple mutations will require greater thought in the future, if genetic assignment to drug treatment protocols is considered.


Methyl-CpG-Binding Protein 2/genetics , Mutation , Rett Syndrome/genetics , Female , Humans , Male , Parents , Rett Syndrome/etiology
10.
Mol Genet Genomic Med ; 1(2): 113-7, 2013 Jul.
Article En | MEDLINE | ID: mdl-24498607

Spinal muscular atrophy (SMA), the most common autosomal recessive cause of infant death, is typically diagnosed by determination of SMN1 copy number. Approximately 3-5% of patients with SMA retain at least one copy of the SMN1 gene carrying pathogenic insertions, deletions, or point mutations. We report a patient with SMA who is homozygous for two mutations carried in cis: an 8 bp duplication (c.48_55dupGGATTCCG; p.Val19fs*24) and a point mutation (c.662C>T; p.Pro221Leu). The consanguineous parents carry the same two mutations within one SMN1 gene copy. We demonstrate that a more accurate diagnosis of the disease is obtained through a novel diagnostic assay and development of a capillary electrophoresis method to determine the copy number of their mutant alleles. This illustrates the complexity of SMN mutations and suggests additional testing (gene sequencing) may be appropriate when based on family lines.

11.
J Pediatr Endocrinol Metab ; 25(7-8): 741-6, 2012.
Article En | MEDLINE | ID: mdl-23155703

OBJECTIVE: To investigate the GCM2 gene in three siblings with congenital hypoparathyroidism and perform functional analysis. MATERIALS AND METHODS: We sequenced the GCM2 gene by PCR and analyzed the functional consequence of the mutation by transient transfection studies. Haplotype analysis was performed. RESULTS: We identified a nucleotide change, c.408C>A, in exon 3 that is predicted to truncate the Gcm2 protein (p.Tyr136Ter). All three affected siblings were homozygous and both parents were heterozygous for the mutation. Transfection studies revealed the mutant mRNA but not expression of the Gcm2 protein. Haplotype analysis revealed that the two mutant GCM2 alleles shared genotypes on chromosome 6p24.2. CONCLUSIONS: We describe the first GCM2 mutation in exon 3 in patients with severe congenital hypoparathyroidism. Informative genetic markers could not exclude identity by descent for the mutant alleles. Gcm2 protein was not detected after transfection, suggesting that complete lack of Gcm2 action accounts for severe hypoparathyroidism.


Hypoparathyroidism/congenital , Hypoparathyroidism/genetics , Mutation, Missense , Nuclear Proteins/genetics , Transcription Factors/genetics , Adult , Base Sequence , Child , Family , Female , Humans , Infant , Infant, Newborn , Male , Mutation, Missense/physiology , Pedigree , Severity of Illness Index
12.
Am J Med Genet A ; 158A(12): 3168-73, 2012 Dec.
Article En | MEDLINE | ID: mdl-23169673

Mutations in the NK2 homeobox 1 gene (NKX2-1) cause a rare syndrome known as choreoathetosis, congenital hypothyroidism, and neonatal respiratory distress syndrome (OMIM 610978). Here we present the first reported patient with this condition caused by a 14q13.3 deletion which is adjacent to but does not interrupt NKX2-1, and review the literature on this condition. The infant presented at 23 months with a history of developmental delay, hyperkinesia, recurrent respiratory infections, neonatal respiratory distress, and hypothyroidism. Choreiform movements and delayed motor milestones were first noted at 6-8 months of age. TSH levels had been consistently elevated from 8 months of age. The clinical presentation was suggestive of an NKX2-1 mutation. Sequencing of all exons and splice site junctions of NKX2-1 was performed but was normal. Array CGH was then performed and a 3.29 Mb interstitial deletion at 14q13.1-q13.3 was detected. The distal region of loss of the deletion disrupted the surfactant associated 3 (SFTA3) gene but did disrupt NKX2-1. Findings were confirmed on high resolution SNP array and multiplex semiquanitative PCR. NKX2-1 encodes transcriptional factors involved in the developmental pathways for thyroid, lung, and brain. We hypothesize that the region centromeric to NKX2-1 is important for the normal functioning of this gene and when interrupted produces a phenotype that is typical of the choreoathetosis, congenital hypothyroidism, and neonatal respiratory distress syndrome, as seen in our patient. We conclude that deletions at 14q13.3 adjacent to but not involving NKX2-1 can cause choreoathetosis, congenital hypothyroidism, and neonatal respiratory distress syndrome.


Athetosis/genetics , Chorea/genetics , Congenital Hypothyroidism/genetics , Nuclear Proteins/genetics , Respiratory Distress Syndrome, Newborn/genetics , Transcription Factors/genetics , Chromosome Deletion , Chromosomes, Human, Pair 14 , Female , Humans , Infant , Infant, Newborn , Thyroid Nuclear Factor 1
13.
J Child Neurol ; 27(1): 68-73, 2012 Jan.
Article En | MEDLINE | ID: mdl-21813802

Brain-lung-thyroid disease is a rare familial disorder caused by mutations in thyroid transcription factor 1, a gene that regulates neuronal migration. We report the clinical features of ten patients from a single family with a novel gene mutation, including observations regarding treatment. Neurologic features of the kindred included developmental delay, learning difficulties, psychosis, chorea, and dystonia. Three patients had a history of seizure, which has not been previously reported in genetically confirmed cases. Low-dose dopamine-receptor blocking drugs were poorly tolerated in 2 patients who received this therapy, levodopa improved chorea in 3 of 4 children, and diazepam was markedly effective in a single adult patient. Chorea related to brain-lung-thyroid disease appears to respond paradoxically to antidopaminergic drugs. The unusual therapeutic response seen in our patients and others may help elucidate how disease-related migratory deficits affect neural pathways associated with motor control.


Brain Diseases/genetics , Genetic Predisposition to Disease/genetics , Lung Diseases/genetics , Mutation/genetics , Nuclear Proteins/genetics , Thyroid Diseases/genetics , Transcription Factors/genetics , Adolescent , Adult , Brain Diseases/complications , Child , Child, Preschool , Family Health , Female , Genetic Testing , Humans , Infant , Lung Diseases/complications , Male , Severity of Illness Index , Thyroid Diseases/complications , Thyroid Nuclear Factor 1
14.
Am J Perinatol ; 25(10): 637-45, 2008 Nov.
Article En | MEDLINE | ID: mdl-18841530

Infant respiratory distress syndrome (IRDS) can lead to impaired alveolarization and dysmorphic vascularization of bronchopulmonary dysplasia. Clara cell secretory protein (CC10) has anti-inflammatory properties but is deficient in the premature infant. Because surfactant and vascular endothelial growth factor (VEGF) profiles are impaired by inflammation and CC10 inhibits lung inflammation, we hypothesized that CC10 may up-regulate surfactant protein (SP) and VEGF expression. Preterm lambs ( N = 24; 126 +/- 3 days [standard error] gestation) with IRDS were randomized to receive 100 mg/kg surfactant, 100 mg/kg surfactant followed by intratracheal 0.5, 1.5, or 5 mg/kg rhCC10 and studied for 4 hours. Gas exchange and lung mechanics were monitored; surfactant protein and VEGF mRNA profiles in lung were assessed. There was a significant rhCC10 dose-dependent increase in respiratory compliance and ventilation efficiency index; both parameters were significantly greater in animals treated with 5 mg/kg rhCC10 than those treated with surfactant alone. Similarly, there was a significant rhCC10 dose and protein-dependent increase in surfactant protein (SP-B > SP-C > SP-A) and dose- and isoform-dependent increase in VEGF (VEGF189 > VEGF165 > VEGF121). These data demonstrate that early intervention with rhCC10 up-regulates surfactant protein and VEGF expression, supporting the role of CC10 to protect against hyperoxia and mechanical ventilation in the immature lung.


Pulmonary Surfactant-Associated Proteins/metabolism , RNA, Messenger/metabolism , Recombinant Proteins/pharmacology , Respiratory Distress Syndrome, Newborn/drug therapy , Uteroglobin/pharmacology , Vascular Endothelial Growth Factor A/metabolism , Animals , Animals, Newborn , Biological Products/pharmacology , Disease Models, Animal , Dose-Response Relationship, Drug , Humans , Infant, Newborn , Lung/metabolism , Pulmonary Surfactant-Associated Proteins/pharmacology , Pulmonary Surfactants/pharmacology , Random Allocation , Respiration, Artificial , Respiratory Distress Syndrome, Newborn/metabolism , Respiratory Function Tests , Sheep , Up-Regulation
15.
Fertil Steril ; 87(4): 976.e5-7, 2007 Apr.
Article En | MEDLINE | ID: mdl-17241629

OBJECTIVE: To report recurrent transmissions of Barth syndrome through a single oocyte donor carrying a de novo TAZ mutation. DESIGN: Case report. SETTING: Clinical molecular diagnostics laboratory. PATIENT(S): Oocyte donor and individuals conceived with her oocytes. INTERVENTION(S): Molecular testing. MAIN OUTCOME MEASURE(S): Detection of TAZ mutation. RESULT(S): Multiple individuals affected with Barth syndrome conceived from a single oocyte donor who is a carrier of a de novo TAZ mutation. CONCLUSION(S): We report multiple transmissions of Barth syndrome through a single oocyte donor with a de novo TAZ mutation.


Cardiomyopathy, Dilated/genetics , Genetic Diseases, X-Linked/genetics , Mutation , Oocyte Donation/adverse effects , Proteins/genetics , Transcription Factors/genetics , Acyltransferases , Cardiomyopathy, Dilated/etiology , Child, Preschool , Female , Genetic Diseases, X-Linked/etiology , Humans , Male , Syndrome
16.
Pediatr Res ; 60(2): 200-4, 2006 Aug.
Article En | MEDLINE | ID: mdl-16864704

Pulmonary alveolar type II cells synthesize and secrete phospholipids and surfactant proteins. In most mammalian species, the synthesis of phospholipids and proteins of lung surfactant increases with fetal lung maturation, which occurs late in gestation. Factors that may promote lung maturation and surfactant production include the placental hormone, leptin, whose expression increases with advancing gestational age. We demonstrate that physiologic concentrations of leptin (1 and 10 ng/mL) increase the levels of surfactant proteins (SP) A, B, and C mRNA as well as SP-A and SP-B protein in d-17 fetal rat lung explants in vitro. To determine whether leptin exerts similar effects in vivo, we administered leptin antenatally to pregnant rats and compared its effects to that of dexamethasone, a known mediator of fetal lung development. Antenatal treatment with leptin for 2 d significantly increased the average weight of the fetal lungs in relation to their body weight. Histologic analysis revealed that the increase in fetal lung weight was accompanied by an increase in the number and maturation of type II alveolar cells and the expression of surfactant proteins B and C in these cells. Collectively, these results suggest that leptin is a cytokine regulator of rat fetal lung maturity.


Fetal Development/drug effects , Fetus/drug effects , Leptin/pharmacology , Lung/growth & development , Pulmonary Surfactant-Associated Proteins/metabolism , Animals , Female , Fetal Development/physiology , Fetus/chemistry , Fetus/physiology , Leptin/physiology , Pregnancy , Pulmonary Surfactant-Associated Proteins/analysis , Pulmonary Surfactant-Associated Proteins/genetics , RNA, Messenger/analysis , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley
...