Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 12: 715767, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34539707

RESUMEN

Sugar beet (Beta vulgaris subsp. vulgaris) is the exclusive source of sugar in the form of sucrose in temperate climate zones. Sugar beet is grown there as an annual crop from spring to autumn because of the damaging effect of freezing temperatures to taproot tissue. A collection of hybrid and non-hybrid sugar beet cultivars was tested for winter survival rates and freezing tolerance. Three genotypes with either low or high winter survival rates were selected for detailed study of their response to frost. These genotypes differed in the severity of frost injury in a defined inner region in the upper part of the taproot, the so-called pith. We aimed to elucidate genotype- and tissue-dependent molecular processes during freezing and combined analyses of sugar beet anatomy and physiology with transcriptomic and metabolite profiles of leaf and taproot tissues at low temperatures. Freezing temperatures induced strong downregulation of photosynthesis in leaves, generation of reactive oxygen species (ROS), and ROS-related gene expression in taproots. Simultaneously, expression of genes involved in raffinose metabolism, as well as concentrations of raffinose and its intermediates, increased markedly in both leaf and taproot tissue at low temperatures. The accumulation of raffinose in the pith tissue correlated with freezing tolerance of the three genotypes. We discuss a protective role for raffinose and its precursors against freezing damage of sugar beet taproot tissue.

2.
J Exp Bot ; 71(14): 3930-3940, 2020 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-32242225

RESUMEN

Sugar transport proteins are crucial for the coordinated allocation of sugars. In this Expert View we summarize recent key findings of the roles and regulation of sugar transporters in inter- and intracellular transport by focusing on applied approaches, demonstrating how sucrose transporter activity may alter source and sink dynamics and their identities. The plant itself alters its sugar transport activity in a developmentally dependent manner to either establish or load endogenous sinks, for example, during tuber formation and filling. Pathogens represent aberrant sinks that trigger the plant to induce the same processes, resulting in loss of carbon assimilates. We explore common mechanisms of intrinsic, developmentally dependent processes and aberrant, pathogen-induced manipulation of sugar transport. Transporter activity may also be targeted by breeding or genetic modification approaches in crop plants to alter source and sink metabolism upon the overexpression or heterologous expression of these proteins. In addition, we highlight recent progress in the use of sugar analogs to study these processes in vivo.


Asunto(s)
Fitomejoramiento , Plantas , Transporte Biológico , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Sacarosa , Azúcares
3.
Front Plant Sci ; 9: 1657, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30505313

RESUMEN

The tonoplastic inositol transporter INT1 is the only known transport protein in Arabidopsis that facilitates myo-inositol import from the vacuole into the cytoplasm. Impairment of the release of vacuolar inositol by knockout of INT1 results in a severe inhibition of cell elongation in roots as well as in etiolated hypocotyls. Importantly, a more strongly reduced cell elongation was observed when sucrose was supplied in the growth medium, and this sucrose-dependent effect can be complemented by the addition of exogenous myo-inositol. Comparing int1 mutants (defective in transport) with mutants defective in myo-inositol biosynthesis (mips1 mutants) revealed that the sucrose-induced inhibition in cell elongation does not just depend on inositol depletion. Secondary effects as observed for altered availability of inositol in biosynthesis mutants, as disturbed membrane turnover, alterations in PIN protein localization or alterations in inositol-derived signaling molecules could be ruled out to be responsible for impairing the cell elongation in int1 mutants. Although the molecular mechanism remains to be elucidated, our data implicate a crucial role of INT1-transported myo-inositol in regulating cell elongation in a sucrose-dependent manner and underline recent reports of regulatory roles for sucrose and other carbohydrate intermediates as metabolic semaphores.

4.
Plant Physiol ; 176(3): 2330-2350, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29311272

RESUMEN

The controlled distribution of sugars between assimilate-exporting source tissues and sugar-consuming sink tissues is a key element for plant growth and development. Monosaccharide transporters of the SUGAR TRANSPORT PROTEIN (STP) family contribute to the uptake of sugars into sink cells. Here, we report on the characterization of STP7, STP8, and STP12, three previously uncharacterized members of this family in Arabidopsis (Arabidopsis thaliana). Heterologous expression in yeast (Saccharomyces cerevisiae) revealed that STP8 and STP12 catalyze the high-affinity proton-dependent uptake of glucose and also accept galactose and mannose. STP12 additionally transports xylose. STP8 and STP12 are highly expressed in reproductive organs, where their protein products might contribute to sugar uptake into the pollen tube and the embryo sac. stp8.1 and stp12.1 T-DNA insertion lines developed normally, which may point toward functional redundancy with other STPs. In contrast to all other STPs, STP7 does not transport hexoses but is specific for the pentoses l-arabinose and d-xylose. STP7-promoter-reporter gene plants showed an expression of STP7 especially in tissues with high cell wall turnover, indicating that STP7 might contribute to the uptake and recycling of cell wall sugars. Uptake analyses with radioactive l-arabinose revealed that 11 other STPs are able to transport l-arabinose with high affinity. Hence, functional redundancy might explain the missing-mutant phenotype of two stp7 T-DNA insertion lines. Together, these data complete the characterization of the STP family and present the STPs as new l-arabinose transporters for potential biotechnological applications.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Arabinosa/metabolismo , Proteínas de Transporte de Monosacáridos/metabolismo , Xilosa/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , ADN Bacteriano , Regulación de la Expresión Génica de las Plantas , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas de Transporte de Monosacáridos/genética , Plantas Modificadas Genéticamente , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA