Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 8 de 8
1.
Plants (Basel) ; 13(2)2024 Jan 20.
Article En | MEDLINE | ID: mdl-38276763

Soil is a unique ecosystem with peculiar biodiversity that includes cyanobacteria and algae. Traditionally, cyanobacterial and algal cenoses were described mainly using the dominance approach, rarely based on the Braun-Blanquet method (floristic classification). More importantly, in both cases, the species of cyanobacteria and algae in communities were identified using classical methods (light microscopy) only. In this study, we present results of soil algal cenoses classification using the Braun-Blanquet approach based on species composition data obtained via an integrative approach. Characteristic tables include 19 out of 108 samples collected in the Jewish Autonomous Region, Primorsky Territory, and Sakhalin Region (Iturup Island) in 2018 and in 2020-2021. Twenty-five species of algae from four classes were identified in these sites. We described three new associations of algal communities-Coelastrelletum aeroterrestricae ass. nova, Vischerietum magnae ass. nova, Bracteacoccetum bullati ass. nova. PCA analysis corroborated the results of syntaxonomic analysis and revealed that Coelastrelletum aeroterrestricae inhabit soils with a high value of P; Vischerietum magnae inhabit soils with high value of soil organic carbon (SOC), N, and higher humidity; and Bracteacoccetum bullati inhabit soils with high K values.

2.
Dalton Trans ; 52(11): 3403-3419, 2023 Mar 14.
Article En | MEDLINE | ID: mdl-36815348

High-affinity copper transporter 1 (CTR1) is a key link in the transfer of copper (Cu) from the extracellular environment to the cell. Violation in the control system of its expression, or mutations in this gene, cause a global copper imbalance. However, the mechanism of copper transfer via CTR1 remains unclear. It has been shown that transformed bacteria synthesizing the fused GB1-NdCTR become resistant to toxic silver ions. According to UV-Vis spectrophotometry and isothermal titration calorimetry, electrophoretically pure GB1-NdCTR specifically and reversibly binds copper and silver ions, and binding is associated with aggregation. Purified NdCTR1 forms SDS-resistant oligomers. The link between nontrivial properties of NdCTR1 and copper import mechanism from extracellular space, as well as potential chelating properties of NdCTR1, are discussed.


Copper , Silver , Humans , Copper/chemistry , Copper Transporter 1 , Silver/metabolism
3.
Int J Mol Sci ; 22(11)2021 May 23.
Article En | MEDLINE | ID: mdl-34071094

Three main approaches are used to combat severe viral respiratory infections. The first is preemptive vaccination that blocks infection. Weakened or dead viral particles, as well as genetic constructs carrying viral proteins or information about them, are used as an antigen. However, the viral genome is very evolutionary labile and changes continuously. Second, chemical agents are used during infection and inhibit the function of a number of viral proteins. However, these drugs lose their effectiveness because the virus can rapidly acquire resistance to them. The third is the search for points in the host metabolism the effect on which would suppress the replication of the virus but would not have a significant effect on the metabolism of the host. Here, we consider the possibility of using the copper metabolic system as a target to reduce the severity of influenza infection. This is facilitated by the fact that, in mammals, copper status can be rapidly reduced by silver nanoparticles and restored after their cancellation.


Copper/metabolism , Influenza A virus/physiology , Influenza, Human/metabolism , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Ceruloplasmin/physiology , Copper Transport Proteins/metabolism , Copper-Transporting ATPases/physiology , Drug Resistance, Viral , Host-Pathogen Interactions , Humans , Influenza Vaccines , Influenza, Human/drug therapy , Influenza, Human/prevention & control , Influenza, Human/virology , Mammals/metabolism , Metal Nanoparticles/therapeutic use , Molecular Chaperones/metabolism , PrPC Proteins/physiology , RNA, Viral/physiology , Silver/therapeutic use , Superoxide Dismutase-1/physiology , Viral Proteins/physiology , Virus Replication
4.
Vaccines (Basel) ; 8(4)2020 Nov 13.
Article En | MEDLINE | ID: mdl-33202939

The present study assesses copper metabolism of the host organism as a target of antiviral strategy, basing on the "virocell" concept. Silver nanoparticles (AgNPs) were used as a specific active agent because they reduce the level of holo-ceruloplasmin, the main extracellular cuproenzyme. The mouse model of influenza virus A infection was used with two doses: 1 LD50 and 10 LD50. Three treatment regimens were used: Scheme 1-mice were pretreated 4 days before infection and then every day during infection development; Scheme 2-mice were pretreated four days before infection and on the day of virus infection; Scheme 3-virus infection and AgNP treatment started simultaneously, and mice were injected with AgNPs until the end of the experiment. The mice treated by Scheme 1 demonstrated significantly lower mortality, the protection index reached 60-70% at the end of the experiment, and mean lifespan was prolonged. In addition, the treatment of the animals with AgNPs resulted in normalization of the weight dynamics. Despite the amelioration of the infection, AgNP treatment did not influence influenza virus replication. The possibility of using nanosilver as an effective indirectly-acting antiviral drug is discussed.

5.
Open Microbiol J ; 10: 168-175, 2016.
Article En | MEDLINE | ID: mdl-27867430

BACKGROUND: Secondary bacterial influenza complications are a common cause of excesses morbidity and mortality, which determines the need to develop means for specific prophylaxis. Group B streptococcal infection is especially common cause of pneumonia among children and the elderly with underlying conditions. Here we investigate in a mouse model the effects of combined intranasal immunization using live attenuated influenza vaccine and recombinant polypeptides based on group B Streptococcus surface proteins. METHODS: Groups of outbred mice received two doses of the following preparations: 1) the reassortant A/17/Mallard/Netherlands/00/95 (H7N3) influenza virus; 2) a mixture of P6, ScaAB, ScpB1 and Stv recombinant GBS proteins (20 µg total); 3) the A(H7N3) influenza vaccine pooled with the four bacterial peptide preparation; 4) control animals were treated with PBS. RESULTS: Intranasal vaccination using LAIV in combination with GBS polypeptides provided advantageous protection against infections with homologous A/Mallard/Netherlands/12/00 (H7N3) wild type virus or heterologous A/Puerto Rico/8/34 (H1N1) followed by serotype II GBS infection. Also, combined vaccination improved bacterial clearance from the lungs of mice. CONCLUSION: Intranasal immunization with LAIV+GBSV was safe and enabled to induce the antibody response to each of vaccine components. Thus, the combined vaccine increased the protective effect against influenza and its bacterial complications in mice compared to LAIV-only.

7.
Arch Virol ; 155(9): 1391-9, 2010 Sep.
Article En | MEDLINE | ID: mdl-20532926

Demonstration of the absence of neurovirulent properties of reassortant viruses contained in live attenuated influenza vaccine (LAIV) is a regulatory requirement. A mouse model was used to detect neurovirulent properties of the cold-adapted, temperature-sensitive and attenuated influenza master donor viruses (MDVs) A/Leningrad/134/17/57 (H2N2) and B/USSR/60/69 and derived reassortant influenza viruses. A/NWS/33 (H1N1), which is known to be neurovirulent in mice, was used as a positive control. Under conditions where the positive control virus induced symptoms of disease and showed viral replication in the upper respiratory tract as well as in the brain, replication of the influenza master donor viruses and reassortant influenza A and B viruses was limited to the upper respiratory tract where they were administered. None of the mice inoculated with MDVs or reassortant influenza viruses suffered from disease, and no virus or viral replication was observed in the brains of these mice. The results demonstrate the absence of neurovirulent properties of the MDVs and reassortant influenza viruses derived therefrom used in LAIV.


Brain/virology , Influenza A Virus, H2N2 Subtype/pathogenicity , Influenza B virus/pathogenicity , Influenza Vaccines/administration & dosage , Influenza, Human/virology , Reassortant Viruses/pathogenicity , Animals , Brain/pathology , Cell Line , Chick Embryo , Disease Models, Animal , Dogs , Female , Humans , Influenza A Virus, H2N2 Subtype/genetics , Influenza A Virus, H2N2 Subtype/immunology , Influenza A Virus, H2N2 Subtype/physiology , Influenza B virus/genetics , Influenza B virus/immunology , Influenza B virus/physiology , Influenza Vaccines/genetics , Influenza Vaccines/immunology , Influenza, Human/pathology , Influenza, Human/prevention & control , Mice , Reassortant Viruses/genetics , Reassortant Viruses/immunology , Reassortant Viruses/physiology , Vaccines, Attenuated/administration & dosage , Vaccines, Attenuated/genetics , Vaccines, Attenuated/immunology , Virulence
8.
J Gen Virol ; 91(Pt 4): 931-7, 2010 Apr.
Article En | MEDLINE | ID: mdl-20007357

The cold-adapted (ca) and temperature-sensitive (ts) influenza master donor virus (MDV) B/USSR/60/69 was derived from its wild-type parental virus after successive passages in eggs at 32 degrees C and 25 degrees C. This strain is currently in use for preparing reassortant influenza B vaccine viruses which are used in the Russian trivalent live attenuated influenza vaccine. Vaccine viruses are obtained by classical reassortment of MDV and a currently circulating wild-type virus. The phenotypic properties cold adaptation and temperature sensitivity are inherited from the six genes encoding the internal proteins of the MDV. However, the role of the individual gene segments in temperature sensitivity and thus attenuation is not known. In this study, 35 reassortant viruses of B/USSR/60/69 MDV with current wild-type non-ts influenza B viruses were generated in eggs or MDCK cells and studied in order to identify the genes responsible for their ts phenotype. For each virus the exact genome composition was determined as well as its ts phenotype. The results demonstrated that the polymerase PB2 and PA gene segments of B/USSR/60/69 MDV independently controlled expression of the ts phenotype of B/USSR/60/69 MDV-based reassortant viruses. The other genes coding for internal proteins played no role in this respect. This suggests that mutations in the polymerase genes PB2 and PA play an essential role in attenuation of B/USSR/60/69 MDV-based reassortant influenza B vaccine viruses.


Influenza B virus/genetics , RNA-Dependent RNA Polymerase/genetics , Reassortant Viruses/genetics , Viral Proteins/genetics , Cold Temperature , Influenza B virus/immunology , Influenza Vaccines , Phenotype , RNA-Dependent RNA Polymerase/physiology , Temperature , Viral Proteins/physiology
...