Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 9 de 9
1.
Biochem Biophys Rep ; 34: 101478, 2023 Jul.
Article En | MEDLINE | ID: mdl-37153863

Mesenchymal stromal cells in the muscle layer of the large intestine are essential for the regulation of intestinal motility. They form electrogenic syncytia with the smooth muscle and interstitial cells of Cajal (ICCs) to regulate smooth muscle contraction. Mesenchymal stromal cells are present in the muscle layer throughout the gastrointestinal tract. However, their area-specific characteristics remain ambiguous. In this study, we compared mesenchymal stromal cells from the large and small intestinal muscle layers. Histological analysis using immunostaining showed that the cells in the large and small intestines were morphologically distinct. We established a method to isolate mesenchymal stromal cells from wild-type mice with platelet-derived growth factor receptor-alpha (PDGFRα) as a marker on the cell surface and performed RNAseq. Transcriptome analysis revealed that PDGFRα+ cells in the large intestine exhibited increased expression levels of collagen-related genes, whereas PDGFRα+ cells in the small intestine exhibited increased expression levels of channel/transporter genes, including Kcn genes. These results suggest that mesenchymal stromal cells differ morphologically and functionally depending on gastrointestinal tract. Further investigations of the cellular properties of mesenchymal stromal cells in the gastrointestinal tract will aid in optimizing methods for the prevention and treatment of gastrointestinal diseases.

2.
J Vet Med Sci ; 85(7): 781-789, 2023 Jul 17.
Article En | MEDLINE | ID: mdl-37258127

In recent years, strategies targeting ß-cell protection via autoimmune regulation have been suggested as novel and potent immunotherapeutic interventions against type 1 diabetes mellitus (T1D). Here, we investigated the potential of toceranib (TOC), a receptor-type tyrosine kinase (RTK) inhibitor used in veterinary practice, to ameliorate T1D. TOC reversed streptozotocin-induced T1D and improved the abnormalities in muscle and bone metabolism characteristic of T1D. Histopathological examination revealed that TOC significantly suppressed ß-cell depletion and improved glycemic control with restoration of serum insulin levels. However, the effect of TOC on blood glucose levels and insulin secretion capacity is attenuated in chronic T1D, a more ß-cell depleted state. These findings suggest that TOC improves glycemic control by ameliorating the streptozotocin-induced decrease in insulin secretory capacity. Finally, we examined the role of platelet-derived growth factor receptor (PDGFR) inhibition, a target of TOC, and found that inhibition of PDGFR reverses established T1D in mice. Our results show that TOC reverses T1D by preserving islet function via inhibition of RTK. The previously unrecognized pharmacological properties of TOC have been revealed, and these properties could lead to its application in the treatment of T1D in the veterinary field.


Diabetes Mellitus, Type 1 , Insulins , Mice , Animals , Diabetes Mellitus, Type 1/drug therapy , Diabetes Mellitus, Type 1/veterinary , Streptozocin/therapeutic use , Pyrroles/pharmacology , Pyrroles/therapeutic use , Protein Kinase Inhibitors , Insulins/therapeutic use
3.
Exp Anim ; 72(1): 68-76, 2023 Feb 21.
Article En | MEDLINE | ID: mdl-36104204

Tracking metabolic changes in skeletal muscle and bone using animal models of diabetes mellitus (DM) provides important insights for the management of DM complications. In this study, we aimed to establish a method for monitoring changes in body composition characteristics, such as fat mass, skeletal muscle mass (lean mass), bone mineral density, and bone mineral content, during DM progression using a dual-energy X-ray absorptiometry (DXA) system in a mouse model of streptozotocin (STZ)-induced type 1 DM. In the DM model, STZ administration resulted in increased blood glucose levels, increased water and food intake, and decreased body weight. Serum insulin levels were significantly decreased on day 30 of STZ administration. The DXA analysis revealed significant and persistent decreases in fat mass, lower limb skeletal muscle mass, and bone mineral content in DM mice. We measured tibialis anterior (TA) muscle weight and performed a quantitative analysis of tibial microstructure by micro-computed tomography imaging in DM mice. The TA muscle weight of DM mice was significantly lower than that of control mice. In addition, the trabecular bone volume fraction, trabecular thickness, trabecular number, and cortical thickness were significantly decreased in DM mice. Pearson's product-moment correlation coefficient analysis showed a high correlation between the DXA-measured and actual body composition. In conclusion, longitudinal measurement of body composition changes using a DXA system may be useful for monitoring abnormalities in muscle and bone metabolism in animal models of metabolic diseases such as DM mice.


Diabetes Mellitus, Experimental , Mice , Animals , Absorptiometry, Photon/methods , X-Ray Microtomography , Bone Density/physiology , Muscular Atrophy
4.
J Vet Med Sci ; 84(4): 610-617, 2022 Apr 15.
Article En | MEDLINE | ID: mdl-35249909

Postoperative ileus (POI) is a postsurgical gastrointestinal motility dysfunction caused by mechanical stress to the intestine during abdominal surgery. POI leads to nausea and vomiting reduced patient quality of life, as well as high medical costs and extended hospitalization. Intestinal inflammation caused by macrophages and neutrophils is thought to be important in the mechanism of POI. Surgery-associated tissue injury and inflammation induce the release of adenosine triphosphate (ATP) from injured cells. Released ATP binds the purinergic P2X7 receptor (P2X7R) expressed on inflammatory cells, inducing the secretion of inflammatory mediators. P2X7R antagonists are thought to be important mediators of the first step in the inflammation process, and studies in chemically induced colitis models confirmed that P2X7R antagonists exhibit anti-inflammatory effects. Therefore, we hypothesized that P2X7R plays an important role in POI. POI models were generated from C57BL/6J mice. Mice were treated with P2X7R antagonist A438079 (34 mg/kg) 30 min before and 2 hr after intestinal manipulation (IM). Inflammatory cell infiltration and gastrointestinal transit were measured. A438079 ameliorated macrophage and neutrophil infiltration in the POI model. Impaired intestinal transit improved following A438079 treatment. P2X7R was expressed on both infiltrating and resident macrophages in the inflamed ileal muscle layer. The P2X7R antagonist A438079 exhibits anti-inflammatory effects via P2X7R expressed on macrophages and therefore could be a target in the treatment of POI.


Ileus , Rodent Diseases , Adenosine Triphosphate , Animals , Anti-Inflammatory Agents/therapeutic use , Disease Models, Animal , Ileus/drug therapy , Ileus/etiology , Ileus/metabolism , Ileus/veterinary , Inflammation/drug therapy , Inflammation/veterinary , Mice , Mice, Inbred C57BL , Postoperative Complications/drug therapy , Postoperative Complications/veterinary , Purinergic P2X Receptor Antagonists/pharmacology , Purinergic P2X Receptor Antagonists/therapeutic use , Quality of Life , Receptors, Purinergic P2X7/therapeutic use
5.
Digestion ; 102(4): 516-526, 2021.
Article En | MEDLINE | ID: mdl-32726781

INTRODUCTION: The serotonin 3A receptor (5-HT3AR) is involved in vomiting and gastrointestinal motility. However, it is not well understood the expression pattern of 5-HT3AR in the gut immunohistochemically and how much contribution of 5-HT3AR to upper or lower intestinal motility. OBJECTIVES: We investigated the contribution of 5-HT3AR to gastrointestinal motor function by using 5-HT3AR KO mice and sought to identify 5-HT3AR-expressing cells via immunohistochemical staining using 5-HT3AR-GFP reporter mice. METHODS: The expression of 5-HT3AR was measured in each section of the gut through real-time PCR. The motor function of the stomach and colon was assessed via the 13C-octanoic acid breath test and colonic bead expulsion test, respectively, using 5-HT3AR KO mice. 5-HT3AR-expressing cells in the muscle layer of the gut were identified by immunohistochemical staining using 5-HT3AR-GFP reporter mice. RESULTS: 5-HT3AR was expressed throughout the digestive tract, and 5-HT3AR expression in the stomach and lower digestive tract was higher than that in the other sections. Motor function in the stomach and colon was lower in 5-HT3AR KO mice than in WT mice. As a result of immunohistochemical staining using GFP reporter mice, cholinergic neurons and PDGFRα+ cells were shown to express 5-HT3AR. In contrast, 5-HT3AR indicated by GFP fluorescence was rarely detected in ICC and smooth muscle cells. CONCLUSIONS: These results show that 5-HT3AR is highly expressed in the stomach and large intestine and that the activation of 5-HT3AR accelerates gastric emptying and large intestine transit. Additionally, 5-HT3AR is highly expressed in cholinergic neurons and some interstitial cells, such as PDGFRα+ cells.


Interstitial Cells of Cajal , Serotonin , Animals , Gastric Emptying , Gastrointestinal Motility , Gastrointestinal Tract , Mice
6.
Digestion ; 102(5): 731-741, 2021.
Article En | MEDLINE | ID: mdl-33260180

INTRODUCTION: Colonic motility disorders are a frequent clinical problem caused by various drugs and diseases. However, the etiology of colonic dysmotility is often unclear due to the lack of in vivo methods, including rapid dynamic assessment. OBJECTIVES: The aim of this study was to establish a novel quantitative method to objectively assess colonic motility using ultrasonography. METHODS: We applied echocardiographic speckle tracking-based strain imaging to analyze murine colonic motility. A trace line was placed on the boundary between the proximal wall of the colon and the inner cavity to analyze colonic wall displacement and strain rate. Locomotion activities of the colonic wall were used to quantify colonic motility via ultrasonography. RESULTS: We found that ultrasonography can quantitatively detect a decrease in colonic motility induced by loperamide, an antidiarrheal drug. These quantitative data were consistent with the imaging findings of colonic peristalsis and colon transit time. Additionally, ultrasonography also revealed changes in colonic motility over short intervals. Furthermore, we have shown that ultrasonography can quantitatively and noninvasively detect colonic dysmotility and hypervascularity of the colonic wall in colitis mice. CONCLUSIONS: These findings suggest that ultrasonography is a useful in vivo method for objectively monitoring changes in colonic motility caused by drugs and diseases.


Colitis , Colon , Animals , Colitis/diagnostic imaging , Colon/diagnostic imaging , Gastrointestinal Motility , Mice , Peristalsis , Ultrasonography
7.
Front Pharmacol ; 11: 587453, 2020.
Article En | MEDLINE | ID: mdl-33633564

The interstitial cells of Cajal associated with the myenteric plexus (ICC-MP) are located in the same area as the myenteric plexus. ICC-MP networks are linked to the generation of electrical pacemaker activity that causes spontaneous gastrointestinal (GI) contractions; however, its role in GI transit is not clear. The aim of this study was to comprehensively investigate the effect of ICC-MP disruption on GI transit in vivo using W/W v mice, partially ICC-deficient model mice. In this study, we measured GI transit using a 13C-octanoic acid breath test, an orally administered dye and a bead expulsion assay. ICC were detected by immunohistochemical staining for c-Kit, a specific marker for ICC. Interestingly, we found that gastric emptying in W/W v mice was normal. We also found that the ability of small intestinal and colonic transit was significantly reduced in W/W v mice. Immunohistochemical staining using whole-mount muscularis samples revealed that c-Kit-positive ICC-MP networks were formed in wild-type mice. In contrast, ICC-MP networks in W/W v mice were maintained only in the gastric antrum and were significantly reduced in the ileum and colon. No significant changes were observed in the nerve structures of the myenteric plexus in W/W v mice. These findings suggest that ICC-MP contribute to GI transit as a powerful driving function in vivo.

8.
PLoS One ; 14(10): e0222961, 2019.
Article En | MEDLINE | ID: mdl-31596858

Gastric emptying (GE) can be either delayed or accelerated in diabetes mellitus (DM). However, most research has focused on delayed GE mediated by a chronic hyperglycemic condition in DM. As such, the function of GE in the early stages of DM is not well understood. Interstitial cells of Cajal (ICC) are pacemaker cells in the gastrointestinal tract. In the present study, we investigated changes in GE and ICC networks in the early stages of DM using a streptozotocin-induced type 1 diabetic mouse model. The changes in GE were measured by the 13C-octanoic acid breath test. ICC networks were immunohistochemically detected by an antibody for c-Kit, a specific marker for ICC. Our results showed that GE in type 1 DM was significantly accelerated in the early stages of DM (2-4 weeks after onset). In addition, acute normalization of blood glucose levels by a single administration of insulin did not recover normal GE. ICC networks of the gastric antrum were significantly increased in DM and were not affected by the acute normalization of blood glucose. In conclusion, our results suggest that GE is accelerated in the early stages of DM, and it is associated with increased ICC networks. This mechanism may help to clarify a link between the onset of DM and GE disorders.


Diabetes Mellitus, Type 1/complications , Gastric Emptying , Hyperglycemia/complications , Interstitial Cells of Cajal/pathology , Animals , Blood Glucose/metabolism , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/physiopathology , Diabetes Mellitus, Type 1/blood , Diabetes Mellitus, Type 1/drug therapy , Diabetes Mellitus, Type 1/physiopathology , Disease Models, Animal , Hyperglycemia/blood , Hyperglycemia/physiopathology , Insulin/pharmacology , Insulin/therapeutic use , Male , Mice, Inbred C57BL , Oxidative Stress/drug effects , Proto-Oncogene Proteins c-kit/metabolism , Streptozocin
9.
Exp Anim ; 68(3): 381-389, 2019 Aug 14.
Article En | MEDLINE | ID: mdl-30971623

Upper gastrointestinal (GI) motility is affected by various drugs and diseases. However, changes in upper GI motility during these conditions are not well understood, as there are few quantitative in vivo methods that assess small intestinal motility in mice. Ultrasonography is a noninvasive method for imaging and evaluating the condition of the abdominal organs. The aim of the present study was to establish a novel method for evaluating small intestinal motility by using ultrasonography in mice. We measured GI motility with and without loperamide, an antidiarrheal medication, by intestinal transit using an orally administered dye, a 13C-octanoic acid breath test, and ultrasonography. Locomotion activity of the duodenal wall was used for quantifying the GI motility observed via ultrasonography. Our results showed that upper GI transit was significantly delayed by loperamide. The 13C-octanoic acid breath test revealed decreased gastric emptying in loperamide-treated mice. Through ultrasonography, large peristaltic movements were observed in the duodenum of the control mice. In contrast, after treatment with loperamide, these peristaltic movements were suppressed, and the duodenal lumen was enlarged, suggesting decreased duodenal motility. In accordance with these results, quantifiable locomotion activity was also significantly decreased. In conclusion, ultrasonography is an effective in vivo method to quantify small intestinal motility in mice.


Antidiarrheals/administration & dosage , Gastrointestinal Motility/physiology , Intestine, Small/physiology , Loperamide/administration & dosage , Mice/physiology , Ultrasonography/methods , Animals , Female , Mice, Inbred C57BL , Models, Animal
...