Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 62
1.
Cell Rep ; 43(4): 114073, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38578825

Macrophages are central innate immune cells whose function declines with age. The molecular mechanisms underlying age-related changes remain poorly understood, particularly in human macrophages. We report a substantial reduction in phagocytosis, migration, and chemotaxis in human monocyte-derived macrophages (MDMs) from older (>50 years old) compared with younger (18-30 years old) donors, alongside downregulation of transcription factors MYC and USF1. In MDMs from young donors, knockdown of MYC or USF1 decreases phagocytosis and chemotaxis and alters the expression of associated genes, alongside adhesion and extracellular matrix remodeling. A concordant dysregulation of MYC and USF1 target genes is also seen in MDMs from older donors. Furthermore, older age and loss of either MYC or USF1 in MDMs leads to an increased cell size, altered morphology, and reduced actin content. Together, these results define MYC and USF1 as key drivers of MDM age-related functional decline and identify downstream targets to improve macrophage function in aging.


Aging , Macrophages , Phagocytosis , Proto-Oncogene Proteins c-myc , Upstream Stimulatory Factors , Humans , Macrophages/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Proto-Oncogene Proteins c-myc/genetics , Adult , Upstream Stimulatory Factors/metabolism , Upstream Stimulatory Factors/genetics , Middle Aged , Adolescent , Phagocytosis/genetics , Young Adult , Transcription, Genetic , Aged , Chemotaxis/genetics
2.
Biol Proced Online ; 25(1): 33, 2023 Dec 14.
Article En | MEDLINE | ID: mdl-38097939

BACKGROUND: The action of mesenchymal stem cells (MSCs) is the subject of intense research in the field of regenerative medicine, including their potential use in companion animals, such as dogs. To ensure the safety of canine MSC batches for their application in regenerative medicine, a quality control test must be conducted in accordance with Good Manufacturing Practices (GMP). Based on guidance provided by the European Medicines Agency, this study aimed to develop and validate a highly sensitive and robust, nucleic acid-based test panel for the detection of various canine pathogens. Analytical sensitivity, specificity, amplification efficiency, and linearity were evaluated to ensure robust assessment. Additionally, viable spike-in controls were used to control for optimal nucleic acid extraction. The conventional PCR-based and real-time PCR-based pathogen assays were evaluated in a real-life setting, by direct testing MSC batches. RESULTS: The established nucleic acid-based assays displayed remarkable sensitivity, detecting 100-1 copies/reaction of template DNA. They also exhibited high specificity and efficiency. Moreover, highly effective nucleic acid isolation was confirmed by the sensitive detection of spike-in controls. The detection capacity of our optimized and validated methods was determined by direct pathogen testing of nine MSC batches that displayed unusual phenotypes, such as reduced cell division or other deviating characteristics. Among these MCS batches of uncertain purity, only one tested negative for all pathogens. The direct testing of these samples yielded positive results for important canine pathogens, including tick-borne disease-associated species and viral members of the canine infectious respiratory disease complex (CIRDC). Notably, samples positive for the etiological agents responsible for enteritis (CPV), leptospirosis (Leptospira interrogans), and neosporosis (Neospora caninum) were also identified. Furthermore, we conducted biosafety evaluation of 12 MSC batches intended for therapeutic application. Eleven MSC batches were found to be free of extraneous agents, and only one tested positive for a specific pathogen, namely, canine parvovirus. CONCLUSION: In this study, we established and validated reliable, highly sensitive, and accurate nucleic acid-based testing methods for a broad spectrum of canine pathogens.

3.
Front Immunol ; 14: 1222308, 2023.
Article En | MEDLINE | ID: mdl-37520567

Introduction: Ageing research is establishing macrophages as key immune system regulators that undergo functional decline. Due to heterogeneity between species and tissue populations, a plethora of data exist and the power of scientific conclusions can vary substantially. This meta-analysis by information content (MAIC) and systematic literature review (SLR) aims to determine overall changes in macrophage gene and protein expression, as well as function, with age. Methods: PubMed was utilized to collate peer-reviewed literature relating to macrophage ageing. Primary studies comparing macrophages in at least two age groups were included. Data pertaining to gene or protein expression alongside method used were extracted for MAIC analysis. For SLR analysis, data included all macrophage-specific changes with age, as well as species, ontogeny and age of groups assessed. Results: A total of 240 studies were included; 122 of which qualified for MAIC. The majority of papers focussed on changes in macrophage count/infiltration as a function of age, followed by gene and protein expression. The MAIC found iNOS and TNF to be the most commonly investigated entities, with 328 genes and 175 proteins showing consistent dysregulation with age across the literature. Overall findings indicate that cytokine secretion and phagocytosis are reduced and reactive oxygen species production is increased in the ageing macrophage. Discussion: Collectively, our analysis identifies critical regulators in macrophage ageing that are consistently dysregulated, highlighting a plethora of targets for further investigation. Consistent functional changes with age found here can be used to confirm an ageing macrophage phenotype in specific studies and experimental models.


Macrophages , Phagocytosis
5.
Genes (Basel) ; 15(1)2023 Dec 23.
Article En | MEDLINE | ID: mdl-38254916

Tribbles pseudokinases (TRIB1-3) are important signaling modulators involved in several cancers. However, their function in gastric cancer (GC) remains undefined. GC is still a deadly disease since the lack of sensitive and specific biomarkers for early diagnosis and therapy response prediction negatively affects patients' outcome. The identification of novel molecular players may lead to more effective diagnostic and therapeutic avenues. Therefore, we investigated the role of TRIB genes in gastric tumorigenesis. Data mining of the TCGA dataset revealed that chromosomal instability (CIN) tumors have lower TRIB2 and higher TRIB3 expression versus microsatellite instability (MSI)-high tumors, while TRIB1 levels are similar in both tumor types. Moreover, in CIN tumors, low TRIB2 expression is significantly associated with aggressive stage IV disease. As no studies on TRIB2 in GC are available, we focused on this gene for further in vitro analyses. We checked the effect of TRIB2 overexpression (OE) on MKN45 and NCI-N87 CIN GC cell lines. In MKN45 cells, TRIB2 OE reduced proliferation and colony formation ability and induced G2/M arrest, while it decreased the proliferation and cell motility of NCI-N87 cells. These effects were not mediated by the MAPK pathway. Our results suggest a tumor-suppressive function of TRIB2 in GC with a CIN phenotype.


Stomach Neoplasms , Humans , Stomach Neoplasms/genetics , Apoptosis , Cell Line, Tumor , G2 Phase Cell Cycle Checkpoints , Chromosomal Instability , Calcium-Calmodulin-Dependent Protein Kinases , Protein Serine-Threonine Kinases/genetics , Intracellular Signaling Peptides and Proteins/genetics
6.
Mol Metab ; 78: 101829, 2023 Dec.
Article En | MEDLINE | ID: mdl-38445671

OBJECTIVE: In vivo studies in humans and mice have implicated the pseudokinase Tribbles 3 (TRIB3) in various aspects of energy metabolism. Whilst cell-based studies indicate a role for TRIB3 in adipocyte differentiation and function, it is unclear if and how these cellular functions may contribute to overall metabolic health. METHODS: We investigated the metabolic phenotype of whole-body Trib3 knockout (Trib3KO) mice, focusing on adipocyte and adipose tissue functions. In addition, we combined lipidomics, transcriptomics, interactomics and phosphoproteomics analyses to elucidate cell-intrinsic functions of TRIB3 in pre- and mature adipocytes. RESULTS: Trib3KO mice display increased adiposity, but their insulin sensitivity remains unaltered. Trib3KO adipocytes are smaller and display higher Proliferating Cell Nuclear Antigen (PCNA) levels, indicating potential alterations in either i) proliferation-differentiation balance, ii) impaired expansion after cell division, or iii) an altered balance between lipid storage and release, or a combination thereof. Lipidome analyses suggest TRIB3 involvement in the latter two processes, as triglyceride storage is reduced and membrane composition, which can restrain cellular expansion, is altered. Integrated interactome, phosphoproteome and transcriptome analyses support a role for TRIB3 in all three cellular processes through multiple cellular pathways, including Mitogen Activated Protein Kinase- (MAPK/ERK), Protein Kinase A (PKA)-mediated signaling and Transcription Factor 7 like 2 (TCF7L2) and Beta Catenin-mediated gene expression. CONCLUSIONS: Our findings support TRIB3 playing multiple distinct regulatory roles in the cytoplasm, nucleus and mitochondria, ultimately controlling adipose tissue homeostasis, rather than affecting a single cellular pathway.


Adipocytes , Adipose Tissue , Protein Serine-Threonine Kinases , Animals , Humans , Mice , Cell Cycle Proteins/genetics , Cell Proliferation , Homeostasis , Lipids , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/antagonists & inhibitors , Repressor Proteins
7.
Front Cardiovasc Med ; 9: 948461, 2022.
Article En | MEDLINE | ID: mdl-36158793

Tribbles 3 (TRIB3) modulates lipid and glucose metabolism, macrophage lipid uptake, with a gain-of-function variant associated with increased cardiovascular risk. Here we set out to examine the role of this pseudokinase in atherosclerotic plaque development. Human endarterectomy atherosclerotic tissue specimens analysed by immunofluorescence showed upregulated TRIB3 in unstable plaques and an enrichment in unstable regions of stable plaques. Atherosclerosis was induced in full body Trib3KO and Trib3WT littermate mice by injecting mPCSK9 expressing adeno-associated virus and western diet feeding for 12 weeks. Trib3KO mice showed expanded visceral adipose depot while circulatory lipid levels remained unaltered compared to wildtype mice. Trib3KO mice aortae showed a reduced plaque development and improved plaque stability, with increased fibrous cap thickness and collagen content, which was accompanied by increased macrophage content. Analysis of both mouse and human macrophages with reduced TRIB3 expression showed elongated morphology, increased actin expression and altered regulation of genes involved in extracellular matrix remodelling. In summary, TRIB3 controls plaque development and may be atherogenic in vivo. Loss of TRIB3 increases fibrous cap thickness via altered metalloproteinase expression in macrophages, thus inhibiting collagen and elastic fibre degradation, suggesting a role for TRIB3 in the formation of unstable plaques.

8.
Int J Mol Sci ; 23(16)2022 Aug 16.
Article En | MEDLINE | ID: mdl-36012474

The formation of pathological bone deposits within soft tissues, termed heterotopic ossification (HO), is common after trauma. However, the severity of HO formation varies substantially between individuals, from relatively isolated small bone islands through to extensive soft tissue replacement by bone giving rise to debilitating symptoms. The aim of this study was to identify novel candidate therapeutic molecular targets for severe HO. We conducted a genome-wide scan in men and women with HO of varying severity following hip replacement for osteoarthritis. HO severity was dichotomized as mild or severe, and association analysis was performed with adjustment for age and sex. We next confirmed expression of the gene encoded by the lead signal in human bone and in primary human mesenchymal stem cells. We then examined the effect of gene knockout in a murine model of osseous trans-differentiation, and finally we explored transcription factor phosphorylation in key pathways perturbed by the gene. Ten independent signals were suggestively associated with HO severity, with KIF26B as the lead. We subsequently confirmed KIF26B expression in human bone and upregulation upon BMP2-induced osteogenic differentiation in primary human mesenchymal stem cells, and also in a rat tendo-Achilles model of post-traumatic HO. CRISPR-Cas9 mediated knockout of Kif26b inhibited BMP2-induced Runx2, Sp7/Osterix, Col1A1, Alp, and Bglap/Osteocalcin expression and mineralized nodule formation in a murine myocyte model of osteogenic trans-differentiation. Finally, KIF26B deficiency inhibited ERK MAP kinase activation during osteogenesis, whilst augmenting p38 and SMAD 1/5/8 phosphorylation. Taken together, these data suggest a role for KIF26B in modulating the severity of post-traumatic HO and provide a potential novel avenue for therapeutic translation.


Kinesins , Ossification, Heterotopic , Osteogenesis , Animals , Cell Differentiation/genetics , Female , Humans , Kinesins/genetics , Male , Mice , Ossification, Heterotopic/genetics , Ossification, Heterotopic/metabolism , Osteocalcin/metabolism , Osteogenesis/genetics , Rats
9.
Int J Mol Sci ; 23(13)2022 Jun 23.
Article En | MEDLINE | ID: mdl-35805978

The term heterotopic ossification (HO) describes bone formation in tissues where bone is normally not present. Musculoskeletal trauma induces signalling events that in turn trigger cells, probably of mesenchymal origin, to differentiate into bone. The aetiology of HO includes extremely rare but severe, generalised and fatal monogenic forms of the disease; and as a common complex disorder in response to musculoskeletal, neurological or burn trauma. The resulting bone forms through a combination of endochondral and intramembranous ossification, depending on the aetiology, initiating stimulus and affected tissue. Given the heterogeneity of the disease, many cell types and biological pathways have been studied in efforts to find effective therapeutic strategies for the disorder. Cells of mesenchymal, haematopoietic and neuroectodermal lineages have all been implicated in the pathogenesis of HO, and the emerging dominant signalling pathways are thought to occur through the bone morphogenetic proteins (BMP), mammalian target of rapamycin (mTOR), and retinoic acid receptor pathways. Increased understanding of these disease mechanisms has resulted in the emergence of several novel investigational therapeutic avenues, including palovarotene and other retinoic acid receptor agonists and activin A inhibitors that target both canonical and non-canonical signalling downstream of the BMP type 1 receptor. In this article we aim to illustrate the key cellular and molecular mechanisms involved in the pathogenesis of HO and outline recent advances in emerging molecular therapies to treat and prevent HO that have had early success in the monogenic disease and are currently being explored in the common complex forms of HO.


Ossification, Heterotopic , Bone Morphogenetic Proteins/metabolism , Humans , Ossification, Heterotopic/etiology , Ossification, Heterotopic/genetics , Osteogenesis , Receptors, Retinoic Acid , Signal Transduction
10.
Theranostics ; 12(8): 3584-3600, 2022.
Article En | MEDLINE | ID: mdl-35664073

Molecular mechanisms that regulate tumor-associated macrophage (TAM) phenotype and function are incompletely understood. The pseudokinase TRIB1 has been reported as a regulator of macrophage phenotypes, both in mouse and human systems. Methods: Bioinformatic analysis was used to investigate the link between TRIB1 expression in breast cancer and therapeutic response to chemotherapy. In vivo models of breast cancer included immune-competent mice to characterize the consequences of altered (reduced or elevated) myeloid Trib1 expression on tumor growth and composition of stromal immune cell populations. Results: TRIB1 was highly expressed by TAMs in breast cancer and high TRIB1 expression correlated with response to chemotherapy and patient survival. Both overexpression and knockout of myeloid Trib1 promote mouse breast tumor growth, albeit through different molecular mechanisms. Myeloid Trib1 deficiency led to an early acceleration of tumor growth, paired with a selective reduction in perivascular macrophage numbers in vivo and enhanced oncogenic cytokine expression in vitro. In contrast, elevated levels of Trib1 in myeloid cells led to an increased late-stage mammary tumor volume, coupled with a reduction of NOS2 expressing macrophages and an overall reduction of macrophages in hypoxic tumor regions. In addition, we show that myeloid Trib1 is a previously unknown, negative regulator of the anti-tumor cytokine IL-15, and that increased myeloid Trib1 expression leads to reduced IL-15 levels in mammary tumors, with a consequent reduction in the number of T-cells that are key to anti-tumor immune responses. Conclusions: Together, these results define a key role for TRIB1 in chemotherapy responses for human breast cancer and provide a mechanistic understanding for the importance of the control of myeloid TRIB1 expression in the development of this disease.


Breast Neoplasms , Tumor-Associated Macrophages , Animals , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Cytokines/metabolism , Female , Humans , Interleukin-15/genetics , Intracellular Signaling Peptides and Proteins/genetics , Mice , Phenotype , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/genetics
11.
ERJ Open Res ; 8(2)2022 Apr.
Article En | MEDLINE | ID: mdl-35382002

Background: Neutrophil extracellular traps (NETs) are web-like DNA and protein lattices which are expelled by neutrophils to trap and kill pathogens, but which cause significant damage to the host tissue. NETs have emerged as critical mediators of lung damage, inflammation and thrombosis in coronavirus disease 2019 (COVID-19) and other diseases, but there are no therapeutics to prevent or reduce NETs that are available to patients. Methods: Neutrophils were isolated from healthy volunteers (n=9) and hospitalised patients with COVID-19 at the acute stage (n=39) and again at 3-4 months post-acute sampling (n=7). NETosis was measured by SYTOX green assays. Results: Here, we show that neutrophils isolated from hospitalised patients with COVID-19 produce significantly more NETs in response to lipopolysaccharide (LPS) compared to cells from healthy control subjects. A subset of patients was captured at follow-up clinics (3-4 months post-acute sampling), and while LPS-induced NET formation is significantly lower at this time point, it remains elevated compared to healthy controls. LPS- and phorbol myristate acetate (PMA)-induced NETs were significantly inhibited by the protein kinase C (PKC) inhibitor ruboxistaurin. Ruboxistaurin-mediated inhibition of NETs in healthy neutrophils reduces NET-induced epithelial cell death. Conclusion: Our findings suggest ruboxistaurin could reduce proinflammatory and tissue-damaging consequences of neutrophils during disease, and since it has completed phase III trials for other indications without safety concerns, it is a promising and novel therapeutic strategy for COVID-19.

12.
Cancers (Basel) ; 13(24)2021 Dec 16.
Article En | MEDLINE | ID: mdl-34944947

The three human Tribbles (TRIB) pseudokinases have been implicated in a plethora of signaling and metabolic processes linked to cancer initiation and progression and can potentially be used as biomarkers of disease and prognosis. While their modes of action reported so far center around protein-protein interactions, the comprehensive profiling of TRIB interactomes has not been reported yet. Here, we have developed a robust mass spectrometry (MS)-based proteomics approach to characterize Tribbles' interactomes and report a comprehensive assessment and comparison of the TRIB1, -2 and -3 interactomes, as well as domain-specific interactions for TRIB3. Interestingly, TRIB3, which is predominantly localized in the nucleus, interacts with multiple transcriptional regulators, including proteins involved in gene repression. Indeed, we found that TRIB3 repressed gene transcription when tethered to DNA in breast cancer cells. Taken together, our comprehensive proteomic assessment reveals previously unknown interacting partners and functions of Tribbles proteins that expand our understanding of this family of proteins. In addition, our findings show that MS-based proteomics provides a powerful tool to unravel novel pseudokinase biology.

13.
Front Immunol ; 11: 574046, 2020.
Article En | MEDLINE | ID: mdl-33329538

The pseudokinase TRIB1 controls cell function in a range of contexts, by regulating MAP kinase activation and mediating protein degradation via the COP1 ubiquitin ligase. TRIB1 regulates polarization of macrophages and dysregulated Trib1 expression in murine models has been shown to alter atherosclerosis burden and adipose homeostasis. Recently, TRIB1 has also been implicated in the pathogenesis of prostate cancer, where it is often overexpressed, even in the absence of genetic amplification. Well described TRIB1 effectors include MAP kinases and C/EBP transcription factors, both in immune cells and in carcinogenesis. However, the mechanisms that regulate TRIB1 itself remain elusive. Here, we show that the long and conserved 3'untranslated region (3'UTR) of TRIB1 is targeted by miRNAs in macrophage and prostate cancer models. By using a systematic in silico analysis, we identified multiple "high confidence" miRNAs potentially binding to the 3'UTR of TRIB1 and report that miR-101-3p and miR-132-3p are direct regulators of TRIB1 expression and function. Binding of miR-101-3p and miR-132-3p to the 3'UTR of TRIB1 mRNA leads to an increased transcription and secretion of interleukin-8. Our data demonstrate that modulation of TRIB1 by miRNAs alters the inflammatory profile of both human macrophages and prostate cancer cells.


Cytokines/metabolism , Intracellular Signaling Peptides and Proteins/physiology , Macrophages/metabolism , MicroRNAs/metabolism , Prostatic Neoplasms/metabolism , Protein Serine-Threonine Kinases/antagonists & inhibitors , 3' Untranslated Regions , Animals , Binding Sites , Cell Line, Tumor , Gene Expression Regulation , Humans , Inflammation , Interleukin-8/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Male , Mice , Mice, Transgenic , MicroRNAs/genetics , Phenotype , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/physiology , RNA, Messenger/genetics , RNA, Messenger/metabolism
14.
Front Vet Sci ; 7: 510, 2020.
Article En | MEDLINE | ID: mdl-32903517

Mesenchymal stem cells (MSC) are emerging as an effective therapeutic tool in treating canine osteoarthritis (OA). In this report, we focused on the questions of whether MSC transplantation has long-term beneficial effects for the improvement in motion and also evaluated the safety of MSC injection. Visceral adipose tissue, a surgical waste obtained during routine ovariectomy served as a source of allogeneic MSCs and used to treat OA. Altogether, fifty-eight dogs were transplanted in the study suffering from OA in the elbow (42 animals), hip (5), knee (8), ankle (2), and hock (1). The effect of MSC transplantation was evaluated by the degree of lameness at a 4-5-years follow-up period based on the owners' subjective observations. The results showed that 83% of the OA patients improved or retained improvement in lameness. Clinical safety of the treatment was assessed by evaluating the coincidence of tumors or other diseases and other adverse reactions (such as local inflammation) after MSC cell therapy. Two incidences of local inflammation for <1 week at the site of injection were reported. No other adverse reactions were detected post-treatment. Sixteen dogs died during the study, 4 due to cancer and 12 due to other diseases, diagnosed by veterinarians. Overall, our survey suggests that MSC transplantation has long-term beneficial effects in reducing lameness. Moreover, no enrichment in a specific cause of death was observed in the transplanted animals, compared to reported literature. Our data suggest that MSC treatment could be an effective and safe long-term therapy for canine OA.

15.
Cancers (Basel) ; 12(9)2020 Sep 11.
Article En | MEDLINE | ID: mdl-32932846

Prostate cancer is the most frequent malignancy in European men and the second worldwide. One of the major oncogenic events in this disease includes amplification of the transcription factor cMYC. Amplification of this oncogene in chromosome 8q24 occurs concomitantly with the copy number increase in a subset of neighboring genes and regulatory elements, but their contribution to disease pathogenesis is poorly understood. Here we show that TRIB1 is among the most robustly upregulated coding genes within the 8q24 amplicon in prostate cancer. Moreover, we demonstrate that TRIB1 amplification and overexpression are frequent in this tumor type. Importantly, we find that, parallel to its amplification, TRIB1 transcription is controlled by cMYC. Mouse modeling and functional analysis revealed that aberrant TRIB1 expression is causal to prostate cancer pathogenesis. In sum, we provide unprecedented evidence for the regulation and function of TRIB1 in prostate cancer.

16.
Atherosclerosis ; 305: 10-18, 2020 07.
Article En | MEDLINE | ID: mdl-32592946

BACKGROUND AND AIMS: Lipid-rich foam cell macrophages drive atherosclerosis via several mechanisms, including inflammation, lipid uptake, lipid deposition and plaque vulnerability. The atheroma environment shapes macrophage function and phenotype; anti-inflammatory macrophages improve plaque stability while pro-inflammatory macrophages promote rupture. Current evidence suggests a variety of macrophage phenotypes occur in atherosclerotic plaques with local lipids, cytokines, oxidised phospholipids and pathogenic stimuli altering their phenotype. In this study, we addressed differential functioning of macrophage phenotypes via a systematic analysis of in vitro polarised, human monocyte-derived macrophage phenotypes, focussing on molecular events that regulate foam-cell formation. METHODS: We examined transcriptomes, protein levels and functionally determined lipid handling and foam cell formation capacity in macrophages polarised with IFNγ+LPS, IL-4, IL-10, oxPAPC and CXCL4. RESULTS: RNA sequencing of differentially polarised macrophages revealed distinct gene expression changes, with enrichment in atherosclerosis and lipid-associated pathways. Analysis of lipid processing activity showed IL-4 and IL-10 macrophages have higher lipid uptake and foam cell formation activities, while inflammatory and oxPAPC macrophages displayed lower foam cell formation. Inflammatory macrophages showed low lipid uptake, while higher lipid uptake in oxPAPC macrophages was matched by increased lipid efflux capacity. CONCLUSIONS: Atherosclerosis-associated macrophage polarisation dramatically affects lipid handling capacity underpinned by major transcriptomic changes and altered protein levels in lipid-handling gene expression. This leads to phenotype-specific differences in LDL uptake, cellular cholesterol levels and cholesterol efflux, informing how the plaque environment influences atherosclerosis progression by influencing macrophage phenotypes.


Atherosclerosis , Cell Polarity , Lipid Metabolism , Macrophages/cytology , Plaque, Atherosclerotic , Atherosclerosis/genetics , Foam Cells/cytology , Humans , Lipoproteins, LDL , Macrophage Activation
17.
Nat Commun ; 11(1): 214, 2020 01 10.
Article En | MEDLINE | ID: mdl-31924781

Neutrophils are implicated in the pathogenesis of atherosclerosis but are seldom detected in atherosclerotic plaques. We investigated whether neutrophil-derived microvesicles may influence arterial pathophysiology. Here we report that levels of circulating neutrophil microvesicles are enhanced by exposure to a high fat diet, a known risk factor for atherosclerosis. Neutrophil microvesicles accumulate at disease-prone regions of arteries exposed to disturbed flow patterns, and promote vascular inflammation and atherosclerosis in a murine model. Using cultured endothelial cells exposed to disturbed flow, we demonstrate that neutrophil microvesicles promote inflammatory gene expression by delivering miR-155, enhancing NF-κB activation. Similarly, neutrophil microvesicles increase miR-155 and enhance NF-κB at disease-prone sites of disturbed flow in vivo. Enhancement of atherosclerotic plaque formation and increase in macrophage content by neutrophil microvesicles is dependent on miR-155. We conclude that neutrophils contribute to vascular inflammation and atherogenesis through delivery of microvesicles carrying miR-155 to disease-prone regions.


Atherosclerosis/metabolism , Endothelium/metabolism , MicroRNAs/metabolism , Neutrophils/metabolism , Animals , Atherosclerosis/pathology , Diet, High-Fat , Disease Models, Animal , Endothelial Cells , Endothelium/pathology , Gene Expression Regulation , Humans , Macrophages/metabolism , Mice , Mice, Knockout, ApoE , MicroRNAs/genetics , NF-kappa B/metabolism , Plaque, Atherosclerotic/metabolism , Plaque, Atherosclerotic/pathology
18.
Sci Adv ; 5(10): eaax9183, 2019 10.
Article En | MEDLINE | ID: mdl-31692955

Macrophages drive atherosclerotic plaque progression and rupture; hence, attenuating their atherosclerosis-inducing properties holds promise for reducing coronary heart disease (CHD). Recent studies in mouse models have demonstrated that Tribbles 1 (Trib1) regulates macrophage phenotype and shows that Trib1 deficiency increases plasma cholesterol and triglyceride levels, suggesting that reduced TRIB1 expression mediates the strong genetic association between the TRIB1 locus and increased CHD risk in man. However, we report here that myeloid-specific Trib1 (mTrib1) deficiency reduces early atheroma formation and that mTrib1 transgene expression increases atherogenesis. Mechanistically, mTrib1 increased macrophage lipid accumulation and the expression of a critical receptor (OLR1), promoting oxidized low-density lipoprotein uptake and the formation of lipid-laden foam cells. As TRIB1 and OLR1 RNA levels were also strongly correlated in human macrophages, we suggest that a conserved, TRIB1-mediated mechanism drives foam cell formation in atherosclerotic plaque and that inhibiting mTRIB1 could be used therapeutically to reduce CHD.


Atherosclerosis/metabolism , Atherosclerosis/pathology , Foam Cells/metabolism , Foam Cells/pathology , Intracellular Signaling Peptides and Proteins/metabolism , Myeloid Cells/metabolism , Protein Serine-Threonine Kinases/antagonists & inhibitors , Animals , Cholesterol/metabolism , Disease Models, Animal , Humans , Male , Mice, Inbred C57BL , Middle Aged , Models, Biological , Plaque, Atherosclerotic/metabolism , Plaque, Atherosclerotic/pathology , Protein Serine-Threonine Kinases/metabolism , Scavenger Receptors, Class E/metabolism
19.
Proc Natl Acad Sci U S A ; 116(33): 16479-16488, 2019 08 13.
Article En | MEDLINE | ID: mdl-31346090

Regulation of IFN signaling is critical in host recognition and response to pathogens while its dysregulation underlies the pathogenesis of several chronic diseases. STimulator of IFN Genes (STING) has been identified as a critical mediator of IFN inducing innate immune pathways, but little is known about direct coregulators of this protein. We report here that TMEM203, a conserved putative transmembrane protein, is an intracellular regulator of STING-mediated signaling. We show that TMEM203 interacts, functionally cooperates, and comigrates with STING following cell stimulation, which in turn leads to the activation of the kinase TBK1, and the IRF3 transcription factor. This induces target genes in macrophages, including IFN-ß. Using Tmem203 knockout bone marrow-derived macrophages and transient knockdown of TMEM203 in human monocyte-derived macrophages, we show that TMEM203 protein is required for cGAMP-induced STING activation. Unlike STING, TMEM203 mRNA levels are elevated in T cells from patients with systemic lupus erythematosus, a disease characterized by the overexpression of type I interferons. Moreover, TMEM203 mRNA levels are associated with disease activity, as assessed by serum levels of the complement protein C3. Identification of TMEM203 sheds light into the control of STING-mediated innate immune responses, providing a potential novel mechanism for therapeutic interventions in STING-associated inflammatory diseases.


Inflammation/metabolism , Macrophages/metabolism , Macrophages/pathology , Membrane Proteins/metabolism , Signal Transduction , Conserved Sequence , Down-Regulation , Evolution, Molecular , HeLa Cells/metabolism , Humans , Inflammation/pathology , Interferon Regulatory Factor-3/metabolism , Interferon Type I/metabolism , Lupus Erythematosus, Systemic/metabolism , Lupus Erythematosus, Systemic/pathology , Lysosomes/metabolism , Membrane Proteins/chemistry , Membrane Proteins/genetics , Nucleotides, Cyclic/metabolism , Protein Binding , Protein Domains , Protein Serine-Threonine Kinases/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Stromal Interaction Molecule 1/metabolism
...