Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 25
1.
Microbiol Spectr ; 12(5): e0010624, 2024 May 02.
Article En | MEDLINE | ID: mdl-38534170

Plant-pathogenic bacteria cause numerous diseases in host plants and can result in serious damage. Timely and accurate diagnostic techniques are, therefore, crucial. While advances in molecular techniques have led to diagnostic systems able to distinguish known plant pathogens at the species or strain level, systems covering larger categories are mostly lacking. In this study, a specific and universal LAMP-based diagnostic system was developed for phytoplasmas, a large group of insect-borne plant-pathogenic bacteria that cause significant agricultural losses worldwide. Targeting the 23S rRNA gene of phytoplasma, the newly designed primer set CaPU23S-4 detected 31 'Candidatus Phytoplasma' tested within 30 min. This primer set also showed high specificity, without false-positive results for other bacteria (including close relatives of phytoplasmas) or healthy plants. The detection sensitivity was ~10,000 times higher than that of PCR methods for phytoplasma detection. A simple, rapid method of DNA extraction, by boiling phytoplasma-infected tissues, was developed as well. When used together with the universal LAMP assay, it enabled the prompt and accurate detection of phytoplasmas from plants and insects. The results demonstrate the potential of the 23S rRNA gene as a versatile target for the LAMP-based universal detection of bacteria at the genus level and provide a novel avenue for exploring this gene as molecular marker for phytoplasma presence detection.IMPORTANCEPhytoplasmas are associated with economically important diseases in crops worldwide, including lethal yellowing of coconut palm, "flavescence dorée" and "bois noir" of grapevine, X-disease in stone fruits, and white leaf and grassy shoot in sugarcane. Numerous LAMP-based diagnostic assays, mostly targeting the 16S rRNA gene, have been reported for phytoplasmas. However, these assays can only detect a limited number of 'Candidatus Phytoplasma' species, whereas the genus includes at least 50 of these species. In this study, a universal, specific, and rapid diagnostic system was developed that can detect all provisionally classified phytoplasmas within 1 h by combining the LAMP technique targeting the 23S rRNA gene with a simple method for DNA extraction. This diagnostic system will facilitate the on-site detection of phytoplasmas and may aid in the discovery of new phytoplasma-associated diseases and putative insect vectors, irrespective of the availability of infrastructure and experimental resources.


DNA, Bacterial , Molecular Diagnostic Techniques , Nucleic Acid Amplification Techniques , Phytoplasma , Plant Diseases , RNA, Ribosomal, 23S , Phytoplasma/genetics , Phytoplasma/classification , Phytoplasma/isolation & purification , Nucleic Acid Amplification Techniques/methods , RNA, Ribosomal, 23S/genetics , Plant Diseases/microbiology , DNA, Bacterial/genetics , Molecular Diagnostic Techniques/methods , Sensitivity and Specificity , DNA Primers/genetics , Animals , Plants/microbiology
2.
Mol Plant Pathol ; 25(1): e13410, 2024 Jan.
Article En | MEDLINE | ID: mdl-38105442

Phytoplasmas infect a wide variety of plants and can cause distinctive symptoms including the conversion of floral organs into leaf-like organs, known as phyllody. Phyllody is induced by an effector protein family called phyllogens, which interact with floral MADS-box transcription factors (MTFs) responsible for determining the identity of floral organs. The MTF/phyllogen complex then interacts with the proteasomal shuttle protein RADIATION SENSITIVE23 (RAD23), which facilitates delivery of the MTF/phyllogen complex to the host proteasome for MTF degradation. Previous studies have indicated that the MTF degradation specificity of phyllogens is determined by their ability to bind to MTFs. However, in the present study, we discovered a novel mechanism determining the degradation specificity through detailed functional analyses of a phyllogen homologue of rice yellow dwarf phytoplasma (PHYLRYD ). PHYLRYD degraded a narrower range of floral MTFs than other phyllody-inducing phyllogens, resulting in compromised phyllody phenotypes in plants. Interestingly, PHYLRYD was able to bind to some floral MTFs that PHYLRYD was unable to efficiently degrade. However, the complex of PHYLRYD and the non-degradable MTF could not interact with RAD23. These results indicate that the MTF degradation specificity of PHYLRYD is correlated with the ability to form the MTF/PHYLRYD /RAD23 ternary complex, rather than the ability to bind to MTF. This study elucidated that phyllogen target specificity is regulated by both the MTF-binding ability and RAD23 recruitment ability of the MTF/phyllogen complex.


Phytoplasma , Proteasome Endopeptidase Complex , Proteasome Endopeptidase Complex/metabolism , Phytoplasma/genetics , Bacterial Proteins/metabolism , Transcription Factors/metabolism , Plants/metabolism
3.
Viruses ; 15(8)2023 08 03.
Article En | MEDLINE | ID: mdl-37632030

Tomato mottle mosaic virus (ToMMV) is an emerging seed-transmissible tobamovirus that infects tomato and pepper. Since the first report in 2013 in Mexico, ToMMV has spread worldwide, posing a serious threat to the production of both crops. To prevent the spread of this virus, early and accurate detection of infection is required. In this study, we developed a detection method for ToMMV based on reverse-transcription loop-mediated isothermal amplification (RT-LAMP). A LAMP primer set was designed to target the genomic region spanning the movement protein and coat protein genes, which is a highly conserved sequence unique to ToMMV. This RT-LAMP detection method achieved 10-fold higher sensitivity than conventional RT-polymerase chain reaction methods and obtained high specificity without false positives for closely related tobamoviruses or healthy tomato plants. This method can detect ToMMV within 30 min of direct sampling of an infected tomato leaf using a toothpick and therefore does not require RNA purification. Given its high sensitivity, specificity, simplicity, and rapidity, the RT-LAMP method developed in this study is expected to be valuable for point-of-care testing in field surveys and for large-scale testing.


Solanum lycopersicum , Tobamovirus , Tobamovirus/genetics , Polymerase Chain Reaction , Crops, Agricultural
4.
Front Genet ; 14: 1132432, 2023.
Article En | MEDLINE | ID: mdl-37252660

Phytoplasmas are obligate intracellular plant pathogenic bacteria that can induce phyllody, which is a type of abnormal floral organ development. Phytoplasmas possess phyllogens, which are effector proteins that cause phyllody in plants. Phylogenetic comparisons of phyllogen and 16S rRNA genes have suggested that phyllogen genes undergo horizontal transfer between phytoplasma species and strains. However, the mechanisms and evolutionary implications of this horizontal gene transfer are unclear. Here, we analyzed synteny in phyllogen flanking genomic regions from 17 phytoplasma strains that were related to six 'Candidatus' species, including three strains newly sequenced in this study. Many of the phyllogens were flanked by multicopy genes within potential mobile units (PMUs), which are putative transposable elements found in phytoplasmas. The multicopy genes exhibited two distinct patterns of synteny that correlated with the linked phyllogens. The low level of sequence identities and partial truncations found among these phyllogen flanking genes indicate that the PMU sequences are deteriorating, whereas the highly conserved sequences and functions (e.g., inducing phyllody) of the phyllogens suggest that the latter are important for phytoplasma fitness. Furthermore, although their phyllogens were similar, PMUs in strains related to 'Ca. P. asteris' were often located in different regions of the genome. These findings strongly indicate that PMUs drive the horizontal transfer of phyllogens among phytoplasma species and strains. These insights improve our understanding of how symptom-determinant genes have been shared among phytoplasmas.

5.
Front Plant Sci ; 14: 1058059, 2023.
Article En | MEDLINE | ID: mdl-37056494

To understand protein function deeply, it is important to identify how it interacts physically with its target. Phyllogen is a phyllody-inducing effector that interacts with the K domain of plant MADS-box transcription factors (MTFs), which is followed by proteasome-mediated degradation of the MTF. Although several amino acid residues of phyllogen have been identified as being responsible for the interaction, the exact interface of the interaction has not been elucidated. In this study, we comprehensively explored interface residues based on random mutagenesis using error-prone PCR. Two novel residues, at which mutations enhanced the affinity of phyllogen to MTF, were identified. These residues, and all other known interaction-involved residues, are clustered together at the surface of the protein structure of phyllogen, indicating that they constitute the interface of the interaction. Moreover, in silico structural prediction of the protein complex using ColabFold suggested that phyllogen interacts with the K domain of MTF via the putative interface. Our study facilitates an understanding of the interaction mechanisms between phyllogen and MTF.

6.
Microbiol Resour Announc ; 11(12): e0043422, 2022 Dec 15.
Article En | MEDLINE | ID: mdl-36326497

Two complete and three partial genome sequences of grapevine red globe virus (GRGV) from grapevines (Vitis spp.) in Japan were determined.

7.
Microbiol Resour Announc ; 11(6): e0032322, 2022 Jun 16.
Article En | MEDLINE | ID: mdl-35583349

We report the complete genome sequence of a Japanese isolate of Tea plant necrotic ring blotch virus (TPNRBV-J). The predicted TPNRBV-J genes have the same organization as those of a Chinese isolate, and the 5' termini of the segments have conserved nucleotide sequences.

8.
Plant Cell ; 34(5): 1709-1723, 2022 04 26.
Article En | MEDLINE | ID: mdl-35234248

Plant pathogenic bacteria have developed effectors to manipulate host cell functions to facilitate infection. A certain number of effectors use the conserved ubiquitin-proteasome system in eukaryotic to proteolyze targets. The proteasome utilization mechanism is mainly mediated by ubiquitin interaction with target proteins destined for degradation. Phyllogens are a family of protein effectors produced by pathogenic phytoplasmas that transform flowers into leaves in diverse plants. Here, we present a noncanonical mechanism for phyllogen action that involves the proteasome and is ubiquitin-independent. Phyllogens induce proteasomal degradation of floral MADS-box transcription factors (MTFs) in the presence of RADIATION-SENSITIVE23 (RAD23) shuttle proteins, which recruit ubiquitinated proteins to the proteasome. Intracellular localization analysis revealed that phyllogen induced colocalization of MTF with RAD23. The MTF/phyllogen/RAD23 ternary protein complex was detected not only in planta but also in vitro in the absence of ubiquitin, showing that phyllogen directly mediates interaction between MTF and RAD23. A Lys-less nonubiquitinated phyllogen mutant induced degradation of MTF or a Lys-less mutant of MTF. Furthermore, the method of sequential formation of the MTF/phyllogen/RAD23 protein complex was elucidated, first by MTF/phyllogen interaction and then RAD23 recruitment. Phyllogen recognized both the evolutionarily conserved tetramerization region of MTF and the ubiquitin-associated domain of RAD23. Our findings indicate that phyllogen functionally mimics ubiquitin as a mediator between MTF and RAD23.


Phytoplasma , Saccharomyces cerevisiae Proteins , Flowers/metabolism , Phytoplasma/metabolism , Plants/metabolism , Proteasome Endopeptidase Complex/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Ubiquitin/metabolism
9.
Arch Virol ; 167(2): 615-618, 2022 Feb.
Article En | MEDLINE | ID: mdl-35013816

Fatsia japonica is an evergreen shrub native to Japan. For decades, virus-like ringspot symptoms have been observed on leaves of F. japonica in Japan; however, previous attempts to identify the causal agents have been unsuccessful. In this study, we detected an orthotospovirus-like sequence in symptomatic F. japonica plants using RNA sequencing analysis. The complete nucleotide sequences of the L, M, and S segments of the virus were determined using conventional sequencing strategies. The virus had a typical orthotospovirus genome structure, and the putative nucleocapsid protein showed the highest sequence identity to that of groundnut chlorotic fan-spot virus, with 83.7% identity at the amino acid level (which is below the 90% species demarcation cutoff for the genus Orthotospovirus). Although we could not confirm the pathogenicity of the virus in F. japonica due to difficulties associated with mechanical inoculation, its association with the observed symptoms was suggested by the fact that the virus was detected only in symptomatic leaf areas. Based on these results, we consider this virus, which we have named "Fatsia japonica ringspot-associated virus" (FjRSaV), to be the first representative of a new orthotospovirus species, for which we propose the binomial "Orthotospovirus fatsiae".


Plant Diseases , RNA Viruses , High-Throughput Nucleotide Sequencing , Phylogeny , Sequence Analysis, DNA
10.
Mol Plant Pathol ; 21(10): 1322-1336, 2020 10.
Article En | MEDLINE | ID: mdl-32813310

Flower malformation represented by phyllody is a common symptom of phytoplasma infection induced by a novel family of phytoplasma effectors called phyllogens. Despite the accumulation of functional and structural phyllogen information, the molecular mechanisms of phyllody have not yet been integrated with their evolutionary aspects due to the limited data on their homologs across diverse phytoplasma lineages. Here, we developed a novel universal PCR-based approach to identify 25 phytoplasma phyllogens related to nine "Candidatus Phytoplasma" species, including four species whose phyllogens have not yet been identified. Phylogenetic analyses showed that the phyllogen family consists of four groups (phyl-A, -B, -C, and -D) and that the evolutionary relationships of phyllogens were significantly distinct from those of phytoplasmas, suggesting that phyllogens were transferred horizontally among phytoplasma strains and species. Although phyllogens belonging to the phyl-A, -C, and -D groups induced phyllody, the phyl-B group lacked the ability to induce phyllody. Comparative functional analyses of phyllogens revealed that a single amino acid polymorphism in phyl-B group phyllogens prevented interactions between phyllogens and A- and E-class MADS domain transcription factors (MTFs), resulting in the inability to degrade several MTFs and induce phyllody. Our finding of natural variation in the function of phytoplasma effectors provides new insights into molecular mechanisms underlying the aetiology of phytoplasma diseases.


Bacterial Proteins , Phytoplasma , Amino Acids/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Flowers/growth & development , Flowers/microbiology , Gene Expression Regulation, Bacterial , Gene Transfer, Horizontal , Genes, Bacterial , MADS Domain Proteins/metabolism , Phylogeny , Phytoplasma/genetics , Phytoplasma/metabolism , Phytoplasma/pathogenicity , Plant Diseases/etiology , Plant Diseases/microbiology , Polymorphism, Single Nucleotide , Transcription Factors/metabolism
11.
Sci Rep ; 10(1): 4291, 2020 03 09.
Article En | MEDLINE | ID: mdl-32152370

Phytoplasmas are transmitted by insect vectors in a persistent propagative manner; however, detailed movements and multiplication patterns of phytoplasmas within vectors remain elusive. In this study, spatiotemporal dynamics of onion yellows (OY) phytoplasma in its vector Macrosteles striifrons were investigated by immunohistochemistry-based 3D imaging, whole-mount fluorescence staining, and real-time quantitative PCR. The results indicated that OY phytoplasmas entered the anterior midgut epithelium by seven days after acquisition start (daas), then moved to visceral muscles surrounding the midgut and to the hemocoel at 14-21 daas; finally, OY phytoplasmas entered into type III cells of salivary glands at 21-28 daas. The anterior midgut of the alimentary canal and type III cells of salivary glands were identified as the major sites of OY phytoplasma infection. Fluorescence staining further revealed that OY phytoplasmas spread along the actin-based muscle fibers of visceral muscles and accumulated on the surfaces of salivary gland cells. This accumulation would be important for phytoplasma invasion into salivary glands, and thus for successful insect transmission. This study demonstrates the spatiotemporal dynamics of phytoplasmas in insect vectors. The findings from this study will aid in understanding of the underlying mechanism of insect-borne plant pathogen transmission.


Digestive System/microbiology , Insect Vectors/microbiology , Insecta/physiology , Onions/microbiology , Phytoplasma/growth & development , Plant Diseases/microbiology , Salivary Glands/microbiology , Animals , Host-Pathogen Interactions , Insecta/microbiology , Phytoplasma/classification , Spatio-Temporal Analysis
12.
Biochem Biophys Res Commun ; 513(4): 952-957, 2019 06 11.
Article En | MEDLINE | ID: mdl-31010685

Phytoplasmas are plant pathogenic bacteria that often induce unique phyllody symptoms in which the floral organs are transformed into leaf-like structures. Recently, a novel family of bacterial effector genes, called phyllody-inducing genes (phyllogens), was identified as being involved in the induction of phyllody by degrading floral MADS-domain transcription factors (MTFs). However, the structural characteristics of phyllogens are unknown. In this study, we elucidated the crystal structure of PHYL1OY, a phyllogen of 'Candidatus Phytoplasma asteris' onion yellows strain, at a resolution of 2.4 Å. The structure of PHYL1 consisted of two α-helices connected by a random loop in a coiled-coil manner. In both α-helices, the distributions of hydrophobic residues were conserved among phyllogens. Amino acid insertion mutations into either α-helix resulted in the loss of phyllody-inducing activity and the ability of the phyllogen to degrade floral MTF. In contrast, the same insertion in the loop region did not affect either activity, indicating that both conserved α-helices are important for the function of phyllogens. This is the first report on the crystal structure of an effector protein of phytoplasmas.


Bacterial Proteins/chemistry , Phytoplasma/chemistry , Crystallography, X-Ray , Molecular Structure , Plant Diseases/microbiology , Protein Conformation, alpha-Helical
13.
Microbiology (Reading) ; 164(8): 1048-1058, 2018 08.
Article En | MEDLINE | ID: mdl-29952745

Phytoplasmas are plant-pathogenic bacteria that infect many important crops and cause serious economic losses worldwide. However, owing to an inability to culture phytoplasmas, screening of antimicrobials on media is difficult. The only antimicrobials being used to control phytoplasmas are tetracycline-class antibiotics. In this study, we developed an accurate and efficient screening method to evaluate the effects of antimicrobials using an in vitro plant-phytoplasma co-culture system. We tested 40 antimicrobials, in addition to tetracycline, and four of these (doxycycline, chloramphenicol, thiamphenicol and rifampicin) decreased the accumulation of 'Candidatus (Ca.) Phytoplasma asteris'. The phytoplasma was eliminated from infected plants by the application of both tetracycline and rifampicin. We also compared nucleotide sequences of rRNAs and amino acid sequences of proteins targeted by antimicrobials between phytoplasmas and other bacteria. Since antimicrobial target sequences were conserved among various phytoplasma species, the antimicrobials that decreased accumulation of 'Ca. P. asteris' may also have been effective against other phytoplasma species. These approaches will provide new strategies for phytoplasma disease management.


Anti-Bacterial Agents/pharmacology , Chrysanthemum/microbiology , Phytoplasma/drug effects , Plant Diseases/microbiology , Chloramphenicol/pharmacology , Coculture Techniques , Doxycycline/pharmacology , Drug Combinations , Microbial Sensitivity Tests , RNA, Ribosomal/genetics , Rifampin/pharmacology , Tetracycline/pharmacology , Thiamphenicol/pharmacology
14.
Genome Announc ; 6(7)2018 Feb 15.
Article En | MEDLINE | ID: mdl-29449391

The complete genome sequence of the first Japanese isolate of hibiscus latent Singapore virus (HLSV-J) was determined. The genomes of HLSV-J and a reported isolate from Singapore had only 86.7% nucleotide identity, while the encoded proteins shared amino acid identities of more than 95%.

15.
DNA Cell Biol ; 36(12): 1081-1092, 2017 Dec.
Article En | MEDLINE | ID: mdl-29039971

Phytoplasmas are obligate intracellular parasitic bacteria that infect both plants and insects. We previously identified the sigma factor RpoD-dependent consensus promoter sequence of phytoplasma. However, the genome-wide landscape of RNA transcripts, including non-coding RNAs (ncRNAs) and RpoD-independent promoter elements, was still unknown. In this study, we performed an improved RNA sequencing analysis for genome-wide identification of the transcription start sites (TSSs) and the consensus promoter sequences. We constructed cDNA libraries using a random adenine/thymine hexamer primer, in addition to a conventional random hexamer primer, for efficient sequencing of 5'-termini of AT-rich phytoplasma RNAs. We identified 231 TSSs, which were classified into four categories: mRNA TSSs, internal sense TSSs, antisense TSSs (asTSSs), and orphan TSSs (oTSSs). The presence of asTSSs and oTSSs indicated the genome-wide transcription of ncRNAs, which might act as regulatory ncRNAs in phytoplasmas. This is the first description of genome-wide phytoplasma ncRNAs. Using a de novo motif discovery program, we identified two consensus motif sequences located upstream of the TSSs. While one was almost identical to the RpoD-dependent consensus promoter sequence, the other was an unidentified novel motif, which might be recognized by another transcription initiation factor. These findings are valuable for understanding the regulatory mechanism of phytoplasma gene expression.


Phytoplasma/genetics , Animals , Base Sequence , Conserved Sequence , Gene Library , Genome, Bacterial , Insecta/microbiology , Phytoplasma/pathogenicity , Plants/microbiology , Promoter Regions, Genetic , RNA, Bacterial/genetics , RNA, Untranslated/genetics , Sequence Analysis, RNA , Transcription Initiation Site
16.
PLoS Pathog ; 13(6): e1006463, 2017 Jun.
Article En | MEDLINE | ID: mdl-28640879

Plant virus movement proteins (MPs) localize to plasmodesmata (PD) to facilitate virus cell-to-cell movement. Numerous studies have suggested that MPs use a pathway either through the ER or through the plasma membrane (PM). Furthermore, recent studies reported that ER-PM contact sites and PM microdomains, which are subdomains found in the ER and PM, are involved in virus cell-to-cell movement. However, functional relationship of these subdomains in MP traffic to PD has not been described previously. We demonstrate here the intracellular trafficking of fig mosaic virus MP (MPFMV) using live cell imaging, focusing on its ER-directing signal peptide (SPFMV). Transiently expressed MPFMV was distributed predominantly in PD and patchy microdomains of the PM. Investigation of ER translocation efficiency revealed that SPFMV has quite low efficiency compared with SPs of well-characterized plant proteins, calreticulin and CLAVATA3. An MPFMV mutant lacking SPFMV localized exclusively to the PM microdomains, whereas SP chimeras, in which the SP of MPFMV was replaced by an SP of calreticulin or CLAVATA3, localized exclusively to the nodes of the ER, which was labeled with Arabidopsis synaptotagmin 1, a major component of ER-PM contact sites. From these results, we speculated that the low translocation efficiency of SPFMV contributes to the generation of ER-translocated and the microdomain-localized populations, both of which are necessary for PD localization. Consistent with this hypothesis, SP-deficient MPFMV became localized to PD when co-expressed with an SP chimera. Here we propose a new model for the intracellular trafficking of a viral MP. A substantial portion of MPFMV that fails to be translocated is transferred to the microdomains, whereas the remainder of MPFMV that is successfully translocated into the ER subsequently localizes to ER-PM contact sites and plays an important role in the entry of the microdomain-localized MPFMV into PD.


Arabidopsis/virology , Cell Membrane/virology , Endoplasmic Reticulum/metabolism , Plant Viral Movement Proteins/metabolism , Plasmodesmata/virology , Tobacco Mosaic Virus/isolation & purification , Arabidopsis/metabolism , Cell Membrane/metabolism , Endoplasmic Reticulum/virology , Membrane Microdomains/metabolism , Membrane Microdomains/virology , Microtubules/metabolism , Microtubules/virology , Plasmodesmata/metabolism , Protein Transport/physiology , Nicotiana/virology , Tobacco Mosaic Virus/metabolism
17.
J Exp Bot ; 68(11): 2799-2811, 2017 05 17.
Article En | MEDLINE | ID: mdl-28505304

ABCE-class MADS domain transcription factors (MTFs) are key regulators of floral organ development in angiosperms. Aberrant expression of these genes can result in abnormal floral traits such as phyllody. Phyllogen is a virulence factor conserved in phytoplasmas, plant pathogenic bacteria of the class Mollicutes. It triggers phyllody in Arabidopsis thaliana by inducing degradation of A- and E-class MTFs. However, it is still unknown whether phyllogen can induce phyllody in plants other than A. thaliana, although phytoplasma-associated phyllody symptoms are observed in a broad range of angiosperms. In this study, phyllogen was shown to cause phyllody phenotypes in several eudicot species belonging to three different families. Moreover, phyllogen can interact with MTFs of not only angiosperm species including eudicots and monocots but also gymnosperms and a fern, and induce their degradation. These results suggest that phyllogen induces phyllody in angiosperms and inhibits MTF function in diverse plant species.


Bacterial Toxins , MADS Domain Proteins/metabolism , Phytoplasma/pathogenicity , Plant Diseases/microbiology , Plant Proteins/metabolism , Plants/microbiology , Virulence Factors/physiology , Bacterial Toxins/genetics , Cycadopsida/genetics , Cycadopsida/microbiology , Ferns/genetics , Ferns/microbiology , Flowers/microbiology , Gene Expression Regulation, Plant , Magnoliopsida/genetics , Magnoliopsida/microbiology , Phytoplasma/physiology , Proteolysis , Virulence Factors/genetics
18.
Sci Rep ; 5: 11893, 2015 Jul 07.
Article En | MEDLINE | ID: mdl-26150080

Phytoplasmas (class, Mollicutes) are insect-transmissible and plant-pathogenic bacteria that multiply intracellularly in both plants and insects through host switching. Our previous study revealed that phytoplasmal sigma factor rpoD of OY-M strain (rpoDOY) could be a key regulator of host switching, because the expression level of rpoDOY was higher in insect hosts than in plant hosts. In this study, we developed an in vitro transcription assay system to identify RpoDOY-dependent genes and the consensus promoter elements. The assay revealed that RpoDOY regulated some housekeeping, virulence, and host-phytoplasma interaction genes of OY-M strain. The upstream region of the transcription start sites of these genes contained conserved -35 and -10 promoter sequences, which were similar to the typical bacterial RpoD-dependent promoter elements, while the -35 promoter elements were variable. In addition, we searched putative RpoD-dependent genes based on these promoter elements on the whole genome sequence of phytoplasmas using in silico tools. The phytoplasmal RpoD seems to mediate the transcription of not only many housekeeping genes as the principal sigma factor, but also the virulence- and host-phytoplasma interaction-related genes exhibiting host-specific expression patterns. These results indicate that more complex mechanisms exist than previously thought regarding gene regulation enabling phytoplasmas to switch hosts.


Bacterial Proteins/metabolism , Phytoplasma/metabolism , Sigma Factor/metabolism , Animals , Bacterial Proteins/genetics , Base Sequence , DNA-Directed RNA Polymerases/chemistry , DNA-Directed RNA Polymerases/metabolism , Genome, Bacterial , Insecta/microbiology , Molecular Sequence Data , Phytoplasma/genetics , Plant Diseases/microbiology , Plants/microbiology , Promoter Regions, Genetic , Sigma Factor/genetics , Transcription, Genetic , Virulence/genetics
19.
Plant Signal Behav ; 10(8): e1042635, 2015.
Article En | MEDLINE | ID: mdl-26179462

Members of the SEPALLATA (SEP) gene sub-family encode class E floral homeotic MADS-domain transcription factors (MADS TFs) that specify the identity of floral organs. The Arabidopsis thaliana genome contains 4 ancestrally duplicated and functionally redundant SEP genes, SEP1-4. Recently, a gene family of unique effectors, phyllogens, was identified as an inducer of leaf-like floral organs in phytoplasmas (plant pathogenic bacteria). While it was shown that phyllogens target some MADS TFs, including SEP3 for degradation, it is unknown whether the other SEPs (SEP1, SEP2, and SEP4) of Arabidopsis are also degraded by them. In this study, we found that all 4 SEP proteins of Arabidopsis are degraded by a phyllogen using a transient co-expression assay in Nicotiana benthamiana. This finding indicates that phyllogens may broadly target class E MADS TFs of plants.


Arabidopsis Proteins/metabolism , Arabidopsis , Bacterial Proteins , Flowers/growth & development , MADS Domain Proteins/metabolism , Phytoplasma/metabolism , Plant Diseases/microbiology , Arabidopsis/drug effects , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Bacterial Proteins/pharmacology , Gene Expression Regulation, Plant , Multigene Family , Plant Leaves/growth & development , Proteolysis/drug effects , Nicotiana/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
20.
Mol Plant Microbe Interact ; 28(6): 675-88, 2015 Jun.
Article En | MEDLINE | ID: mdl-25650831

Systemic necrosis is one of the most severe symptoms caused by plant RNA viruses. Recently, systemic necrosis has been suggested to have similar features to a defense response referred to as the hypersensitive response (HR), a form of programmed cell death. In virus-infected plant cells, host intracellular membrane structures are changed dramatically for more efficient viral replication. However, little is known about whether this replication-associated membrane modification is the cause of the symptoms. In this study, we identified an amino-terminal amphipathic helix of the helicase encoded by Radish mosaic virus (RaMV) (genus Comovirus) as an elicitor of cell death in RaMV-infected plants. Cell death caused by the amphipathic helix had features similar to HR, such as SGT1-dependence. Mutational analyses and inhibitor assays using cerulenin demonstrated that the amphipathic helix-induced cell death was tightly correlated with dramatic alterations in endoplasmic reticulum (ER) membrane structures. Furthermore, the cell death-inducing activity of the amphipathic helix was conserved in Cowpea mosaic virus (genus Comovirus) and Tobacco ringspot virus (genus Nepovirus), both of which are classified in the family Secoviridae. Together, these results indicate that ER membrane modification associated with viral intracellular replication may be recognized to prime defense responses against plant viruses.


Comovirus/enzymology , Nicotiana/virology , Plant Diseases/virology , Raphanus/virology , Amino Acid Sequence , Cell Death , Cerulenin/pharmacology , Comovirus/genetics , Comovirus/physiology , DNA Helicases/genetics , DNA Helicases/metabolism , Endoplasmic Reticulum/metabolism , Genes, Reporter , Intracellular Membranes/metabolism , Molecular Sequence Data , Mutagenesis, Site-Directed , Necrosis , Plant Leaves/cytology , Plant Leaves/physiology , Plant Leaves/virology , Protein Structure, Secondary , Recombinant Fusion Proteins , Sequence Alignment , Nicotiana/cytology , Nicotiana/drug effects , Nicotiana/physiology , Viral Proteins/genetics , Viral Proteins/metabolism , Virus Replication
...