Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomolecules ; 14(6)2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38927109

RESUMEN

The active form of vitamin D3, 1α,25-dihydroxyvitamin D3 [1,25(OH)2D3], is a principal regulator of calcium homeostasis through activation of the vitamin D receptor (VDR). Previous studies have shown that 2α-(3-hydroxypropyl)-1,25D3 (O1C3) and 2α-(3-hydroxypropoxy)-1,25D3 (O2C3), vitamin D derivatives resistant to inactivation enzymes, can activate VDR, induce leukemic cell differentiation, and increase blood calcium levels in rats more effectively than 1,25(OH)2D3. In this study, to further investigate the usefulness of 2α-substituted vitamin D derivatives, we examined the effects of O2C3, O1C3, and their derivatives on VDR activity in cells and mouse tissues and on osteoblast differentiation of dedifferentiated fat (DFAT) cells, a cell type with potential therapeutic application in regenerative medicine. In cell culture experiments using kidney-derived HEK293 cells, intestinal mucosa-derived CaCO2 cells, and osteoblast-derived MG63 cells, and in mouse experiments, O2C2, O2C3, O1C3, and O1C4 had a weaker effect than or equivalent effect to 1,25(OH)2D3 in VDR transactivation and induction of the VDR target gene CYP24A1, but they enhanced osteoblast differentiation in DFAT cells equally to or more effectively than 1,25(OH)2D3. In long-term treatment with the compound without the medium change (7 days), the derivatives enhanced osteoblast differentiation more effectively than 1,25(OH)2D3. O2C3 and O1C3 were more stable than 1,25(OH)2D3 in DFAT cell culture. These results indicate that 2α-substituted vitamin D derivatives, such as inactivation-resistant O2C3 and O1C3, are more effective than 1,25(OH)2D3 in osteoblast differentiation of DFAT cells, suggesting potential roles in regenerative medicine with DFAT cells and other multipotent cells.


Asunto(s)
Diferenciación Celular , Osteoblastos , Receptores de Calcitriol , Vitamina D , Humanos , Osteoblastos/efectos de los fármacos , Osteoblastos/citología , Osteoblastos/metabolismo , Animales , Receptores de Calcitriol/metabolismo , Diferenciación Celular/efectos de los fármacos , Ratones , Células HEK293 , Vitamina D/análogos & derivados , Vitamina D/farmacología , Células CACO-2 , Adipocitos/efectos de los fármacos , Adipocitos/citología , Adipocitos/metabolismo , Desdiferenciación Celular/efectos de los fármacos , Masculino , Vitamina D3 24-Hidroxilasa/metabolismo , Vitamina D3 24-Hidroxilasa/genética , Calcitriol/farmacología , Calcitriol/análogos & derivados
2.
Biomolecules ; 14(5)2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38785958

RESUMEN

The active vitamin D metabolites, 25-hydroxyvitamin D3 (25D3) and 1,25-dihydroxyvitamin D3 (1,25D3), are produced by successive hydroxylation steps and play key roles in several cellular processes. However, alternative metabolic pathways exist, and among them, the 4-hydroxylation of 25D3 is a major one. This study aims to investigate the structure-activity relationships of 4-hydroxy derivatives of 1,25D3. Structural analysis indicates that 1,4α,25(OH)3D3 and 1,4ß,25(OH)3D3 maintain the anchoring hydrogen bonds of 1,25D3 and form additional interactions, stabilizing the active conformation of VDR. In addition, 1,4α,25D3 and 1,4ß,25D3 are as potent as 1,25D3 in regulating the expression of VDR target genes in rat intestinal epithelial cells and in the mouse kidney. Moreover, these two 4-hydroxy derivatives promote hypercalcemia in mice at a dose similar to that of the parent compound.


Asunto(s)
Receptores de Calcitriol , Animales , Ratones , Relación Estructura-Actividad , Receptores de Calcitriol/metabolismo , Receptores de Calcitriol/química , Receptores de Calcitriol/genética , Ratas , Calcitriol/análogos & derivados , Calcitriol/química , Calcitriol/metabolismo , Calcitriol/síntesis química , Masculino , Vitamina D/análogos & derivados , Vitamina D/metabolismo , Vitamina D/química , Hipercalcemia/metabolismo , Riñón/metabolismo
3.
RSC Med Chem ; 14(10): 2030-2034, 2023 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-37859714

RESUMEN

Vitamin D3 metabolites block lipid biosynthesis by promoting degradation of the complex of sterol regulatory element-binding protein (SREBP) and SREBP cleavage-activating protein (SCAP) independent of their effects on the vitamin D receptor (VDR). We previously reported the development of KK-052, the first vitamin D-based SREBP inhibitor that mitigates hepatic lipid accumulation without VDR-mediated calcemic action in mice. Herein we extend our previous work to synthesize KK-052 analogues. Various substituents were introduced to the phenyl ring of KK-052, and two KK-052 analogues were found to exhibit more potent SREBP/SCAP inhibitory activity than KK-052, whereas they all lack VDR activity. These new KK-052 analogues may be suited for further development as VDR-silent SREBP/SCAP inhibitors.

4.
J Org Chem ; 88(17): 12394-12408, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37590101

RESUMEN

Three novel analogues of C22-fluoro-25-hydroxyvitamin D3 (5-7) were synthesized and evaluated to investigate the effects of side-chain fluorination on biological activity and metabolism of vitamin D. These novel analogues were constructed by convergent synthesis applying the Wittig-Horner coupling reaction between CD-ring ketones (41,42,44) and A-ring phosphine oxide (11). The introduction of C22-fluoro units was achieved by stereoselective deoxy-fluorination for synthesizing 5 and 6 or two-step cationic fluorination for 7. The absolute configuration of the C22-fluoro-8-oxo-CD-ring (39) was confirmed by X-ray crystallographic structure determination. The basic biological activity of the side-chain fluorinated analogues, including compounds (5-7), was evaluated. Generally, osteocalcin promoter transactivation activity decreased in the order of C24-fluoro, C23-fluoro, and C22-fluoro analogues. In addition, the metabolic stability of C22-fluoro-25-hydroxyvitamin D3 (5-7) against hCYP24A1 metabolism was also evaluated. 22,22-Difluoro-25(OH)D3 (7) was more stable against hCYP24A1 metabolism compared with its non-fluorinated counterpart 25-hydroxyvitamin D3 (1), but fluorination at the C22 position had little effect on the metabolic stability compared with C24- and C23-fluoro analogues. Our research clarified that side-chain fluorination in vitamin D markedly changes CYP24A1 metabolic stability depending on the fluorinating position.

5.
Chem Pharm Bull (Tokyo) ; 71(9): 717-723, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37423740

RESUMEN

As an extension of our research on providing a chemical library of side-chain fluorinated vitamin D3 analogues, we newly designed and synthesized 26,27-difluoro-25-hydroxyvitamin D3 (1) and 26,26,27,27-tetrafluoro-25-hydroxyvitamin D3 (2) using a convergent method applying the Wittig-Horner coupling reaction between CD-ring ketones (13, 14) and A-ring phosphine oxide (5). The basic biological activities of analogues, 1, 2, and 26,26,26,27,27,27-hexafluoro-25-hydroxyvitamin D3 [HF-25(OH)D3] were examined. Although the tetrafluorinated new compound 2 exhibited higher binding affinity for vitamin D receptor (VDR) and resistance to CYP24A1-dependent metabolism compared with the difluorinated 1 and its non-fluorinated counterpart 25-hydroxyvitamin D3 [25(OH)D3], HF-25(OH)D3 showed the highest activity among these compounds. Osteocalcin promoter transactivation activity of these fluorinated analogues was tested, and it decreased in the order of HF-25(OH)D3, 2, 1, and 25(OH)D3 in which HF-25(OH)D3 showed 19-times greater activity than the natural 25(OH)D3.


Asunto(s)
Calcifediol , Calcitriol , Calcitriol/farmacología , Calcitriol/metabolismo , Flúor , Semivida , Receptores de Calcitriol/metabolismo , Vitamina D3 24-Hidroxilasa/metabolismo
6.
Bioorg Med Chem Lett ; 88: 129287, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-37094725

RESUMEN

We report the synthesis of a peptide nucleic acid (PNA) monomer containing N4-bis(aminomethyl)benzoylated cytosine (BzC2+ base). The BzC2+ monomer was incorporated into PNA oligomers using Fmoc-based solid-phase synthesis. The BzC2+ base in PNA had two positive charges and exhibited greater affinity for DNA G base than the natural C base. The BzC2+ base stabilized PNA-DNA heteroduplexes through electrostatic attractions, even in high salt conditions. The two positive charges on the BzC2+ residue did not compromise the sequence specificity of PNA oligomers. These insights will aid the future design of cationic nucleobases.


Asunto(s)
Ácidos Nucleicos de Péptidos , Ácidos Nucleicos de Péptidos/química , Citosina , ADN/química
7.
Biomolecules ; 14(1)2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38254637

RESUMEN

Our research regarding side-chain fluorinated vitamin D3 analogues has explored a series of efficient fluorination methods. In this study, a new electrophilic stereo-selective fluorination methodology at C24 and C22 positions of the vitamin D3 side-chain was developed using N-fluorobenzenesulfonimide (NFSI) and CD-ring imides with an Evans chiral auxiliary (26,27,30).


Asunto(s)
Colecalciferol , Halogenación , Imidas
8.
Molecules ; 27(16)2022 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-36014588

RESUMEN

In this paper, we report an efficient synthetic route for the 23,23-difluoro-25-hydroxyvitamin D3 (5) and its 24-hydroxylated analogues (7,8), which are candidates for the CYP24A1 main metabolites of 5. The key fragments, 23,23-difluoro-CD-ring precursors (9-11), were synthesized starting from Inhoffen-Lythgoe diol (12), and introduction of the C23 difluoro unit to α-ketoester (19) was achieved using N,N-diethylaminosulfur trifluoride (DAST). Preliminary biological evaluation revealed that 23,23-F2-25(OH)D3 (5) showed approximately eight times higher resistance to CYP24A1 metabolism and 12 times lower VDR-binding affinity than its nonfluorinated counterpart 25(OH)D3 (1).


Asunto(s)
Calcifediol , Calcitriol , Calcifediol/metabolismo , Calcitriol/farmacología , Receptores de Calcitriol/metabolismo , Vitamina D/análogos & derivados , Vitamina D3 24-Hidroxilasa/metabolismo
9.
Sci Rep ; 12(1): 12517, 2022 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-35869242

RESUMEN

Active vitamin D form 1α,25-dihydroxtvitamin D3 (1,25(OH)2D3) plays pivotal roles in calcium homeostasis and osteogenesis via its transcription regulation effect via binding to vitamin D receptor (VDR). Mutated VDR often causes hereditary vitamin D-dependent rickets (VDDR) type II, and patients with VDDR-II are hardly responsive to physiological doses of 1,25(OH)D3. Current therapeutic approaches, including high doses of oral calcium and supraphysiologic doses of 1,25(OH)2D3, have limited success and fail to improve the quality of life of affected patients. Thus, various vitamin D analogues have been developed as therapeutic options. In our previous study, we generated genetically modified rats with mutated Vdr(R270L), an ortholog of human VDR(R274L) isolated from the patients with VDDR-II. The significant reduced affinity toward 1,25(OH)2D3 of rat Vdr(R270L) enabled us to evaluate biological activities of exogenous VDR ligand without 1α-hydroxy group such as 25(OH)D3. In this study, 2α-[2-(tetrazol-2-yl)ethyl]-1α,25(OH)2D3 (AH-1) exerted much higher affinity for Vdr(R270L) in in vitro ligand binding assay than both 25(OH)D3 and 1,25(OH)2D3. A robust osteogenic activity of AH-1 was observed in Vdr(R270L) rats. Only a 40-fold lower dose of AH-1 than that of 25(OH)D3 was effective in ameliorating rickets symptoms in Vdr(R270L) rats. Therefore, AH-1 may be promising for the therapy of VDDR-II with VDR(R274L).


Asunto(s)
Receptores de Calcitriol , Raquitismo , Animales , Calcio , Humanos , Ligandos , Osteogénesis , Calidad de Vida , Ratas , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Raquitismo/metabolismo , Vitamina D
10.
J Steroid Biochem Mol Biol ; 223: 106133, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35654380

RESUMEN

The complete understanding of the excretion of surplus 25-hydroxyvitamin D<sub>3</sub> [25(OH)D<sub>3</sub>] in humans remains to be accomplished. In our previous study, 24,25-dihydroxyvitamin D<sub>3</sub> [24,25(OH)<sub>2</sub>D<sub>3</sub>] 24-glucuronide was identified as a major urinary vitamin D<sub>3</sub> metabolite, while the glucuronide of 23,25-dihydroxyvitamin D<sub>3</sub> [23,25(OH)<sub>2</sub>D<sub>3</sub>] is another metabolite of interest but has not been sufficiently evaluated. Although the quantitative analysis of 24,25(OH)<sub>2</sub>D<sub>3</sub> liberated in urine by the treatment with ß-glucuronidase (GUS) has been conducted, no information was provided about the amount of the glucuronidated 23,25(OH)<sub>2</sub>D<sub>3</sub> in the urine. In this study, we first developed and validated a liquid chromatography/electrospray ionization-tandem mass spectrometry (LC/ESI-MS/MS)-based method for the simultaneous quantification of 23,25(OH)<sub>2</sub>D<sub>3</sub> and 24,25(OH)<sub>2</sub>D<sub>3</sub> liberated in urine by GUS. The analysis of the urine samples revealed that the amount of 23,25(OH)<sub>2</sub>D<sub>3</sub> was almost as much as that of 24,25(OH)<sub>2</sub>D<sub>3</sub>, in contrast to the fact that the plasma concentration of 23,25(OH)<sub>2</sub>D<sub>3</sub> was much lower than that of 24,25(OH)<sub>2</sub>D<sub>3</sub>. These results strongly suggested that 23,25(OH)<sub>2</sub>D<sub>3</sub> is more susceptible to glucuronidation and more promptly excreted into urine than 24,25(OH)<sub>2</sub>D<sub>3</sub>. Furthermore, the amount ratios of 23,25(OH)<sub>2</sub>D<sub>3</sub> to 24,25(OH)<sub>2</sub>D<sub>3</sub> in the urine samples did not markedly vary during the day (morning/evening) and even by a week-long vitamin D<sub>3</sub> supplementation (1000 IU/body/day). We concluded that the C-23 hydroxylation plays a crucial role in the urinary excretion of surplus 25(OH)D<sub>3</sub>.


Asunto(s)
Colecalciferol , Espectrometría de Masas en Tándem , 24,25-Dihidroxivitamina D 3 , Cromatografía Liquida/métodos , Glucuronidasa , Glucurónidos , Humanos , Espectrometría de Masas en Tándem/métodos , Vitamina D/análogos & derivados
11.
Biomolecules ; 12(1)2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-35053217

RESUMEN

The active form of vitamin D3 (D3), 1a,25-dihydroxyvitamn D3 (1,25D3), plays a central role in calcium and bone metabolism. Many structure-activity relationship (SAR) studies of D3 have been conducted, with the aim of separating the biological activities of 1,25D3 or reducing its side effects, such as hypercalcemia, and SAR studies have shown that the hypercalcemic activity of C2-substituted derivatives and 19-nor type derivatives is significantly suppressed. In the present paper, we describe the synthesis of 19-nor type 1,25D3 derivatives with alkoxy groups at C2, by means of the Julia-Kocienski type coupling reaction between a C2 symmetrical A ring ketone and a CD ring synthon. The effect of C2 substituents on the stereoselectivity of the coupling reaction was evaluated. The biological activities of the synthesized derivatives were evaluated in an HL-60 cell-based assay. The a-methoxy-substituted C2α-7a was found to show potent cell-differentiating activity, with an ED50 value of 0.38 nM, being 26-fold more potent than 1,25D3.


Asunto(s)
Diferenciación Celular/efectos de los fármacos , Colecalciferol , Colecalciferol/análogos & derivados , Colecalciferol/síntesis química , Colecalciferol/química , Colecalciferol/farmacología , Células HL-60 , Humanos , Relación Estructura-Actividad
12.
Cell Chem Biol ; 29(4): 660-669.e12, 2022 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-34506728

RESUMEN

Lactone-vitamin D3 is a major metabolite of vitamin D3, a lipophilic vitamin biosynthesized in numerous life forms by sunlight exposure. Although lactone-vitamin D3 was discovered 40 years ago, its biological role remains largely unknown. Chemical biological analysis of its photoaffinity probe identified the hydroxyacyl-CoA dehydrogenase trifunctional multienzyme complex subunit alpha (HADHA), a mitochondrial enzyme that catalyzes ß-oxidation of long-chain fatty acids, as its selective binding protein. Intriguingly, the interaction of lactone-vitamin D3 with HADHA does not affect the HADHA enzymatic activity but instead limits biosynthesis of carnitine, an endogenous metabolite required for the transport of fatty acids into the mitochondria for ß-oxidation. Lactone-vitamin D3 dissociates the protein-protein interaction of HADHA with trimethyllysine dioxygenase (TMLD), thereby impairing the TMLD enzyme activity essential in carnitine biosynthesis. These findings suggest a heretofore undescribed role of lactone-vitamin D3 in lipid ß-oxidation and carnitine biosynthesis, and possibly in sunlight-dependent shifts of lipid metabolism in animals.


Asunto(s)
Metabolismo de los Lípidos , Vitamina D , Animales , Carnitina , Colecalciferol , Ácidos Grasos/metabolismo , Lactonas , Oxidación-Reducción , Vitaminas
13.
Int J Mol Sci ; 22(21)2021 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-34769269

RESUMEN

We have developed an in vitro system to easily examine the affinity for vitamin D receptor (VDR) and CYP24A1-mediated metabolism as two methods of assessing vitamin D derivatives. Vitamin D derivatives with high VDR affinity and resistance to CYP24A1-mediated metabolism could be good therapeutic agents. This system can effectively select vitamin D derivatives with these useful properties. We have also developed an in vivo system including a Cyp27b1-gene-deficient rat (a type I rickets model), a Vdr-gene-deficient rat (a type II rickets model), and a rat with a mutant Vdr (R270L) (another type II rickets model) using a genome editing method. For Cyp27b1-gene-deficient and Vdr mutant (R270L) rats, amelioration of rickets symptoms can be used as an index of the efficacy of vitamin D derivatives. Vdr-gene-deficient rats can be used to assess the activities of vitamin D derivatives specialized for actions not mediated by VDR. One of our original vitamin D derivatives, which displays high affinity VDR binding and resistance to CYP24A1-dependent metabolism, has shown good therapeutic effects in Vdr (R270L) rats, although further analysis is needed.


Asunto(s)
Descubrimiento de Drogas , Vitamina D , Animales , Evaluación Preclínica de Medicamentos , Humanos , Ratas , Raquitismo/tratamiento farmacológico , Raquitismo/genética , Raquitismo/metabolismo , Vitamina D/análogos & derivados , Vitamina D/farmacocinética , Vitamina D/uso terapéutico
14.
Int J Mol Sci ; 22(21)2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34769295

RESUMEN

Two 24-fluoro-25-hydroxyvitamin D3 analogues (3,4) were synthesized in a convergent manner. The introduction of a stereocenter to the vitamin D3 side-chain C24 position was achieved via Sharpless dihydroxylation, and a deoxyfluorination reaction was utilized for the fluorination step. Comparison between (24R)- and (24S)-24-fluoro-25-hydroxyvitamin D3 revealed that the C24-R-configuration isomer 4 was more resistant to CYP24A1-dependent metabolism than its 24S-isomer 3. The new synthetic route of the CYP24A1 main metabolite (24R)-24,25-dihydroxyvitamin D3 (6) and its 24S-isomer (5) was also studied using synthetic intermediates (30,31) in parallel.


Asunto(s)
Calcifediol/análogos & derivados , Fluoruros/síntesis química , Vitamina D3 24-Hidroxilasa/metabolismo , Estabilidad de Medicamentos , Fluoruros/química , Humanos , Estructura Molecular , Estereoisomerismo
15.
Biomolecules ; 11(11)2021 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-34827637

RESUMEN

The vitamin D3 structure consists of the A-ring, a linker originating from the B-ring, C-ring, D-ring, and side-chain moieties. Each unit has its unique role in expressing the biological activities of vitamin D3. Many efforts have been made to date to assess the possible clinical use of vitamin D. Some organic chemists focused on the D-ring structure of vitamin D and synthesized D-ring-modified vitamin D analogues, and their biological activities were studied. This review summarizes the synthetic methodologies of D-ring-modified vitamin D analogues, except for seco-D, and their preliminary biological profiles.


Asunto(s)
Vitamina D/análogos & derivados , Vitamina D/síntesis química , Animales , Colecalciferol/química , Humanos , Naftalenos/química , Vitamina D/química , Vitamina D/farmacología
16.
Int J Mol Sci ; 22(15)2021 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-34360956

RESUMEN

The discovery of a large variety of functions of vitamin D3 and its metabolites has led to the design and synthesis of a vast amount of vitamin D3 analogues in order to increase the potency and reduce toxicity. The introduction of highly electronegative fluorine atom(s) into vitamin D3 skeletons alters their physical and chemical properties. To date, many fluorinated vitamin D3 analogues have been designed and synthesized. This review summarizes the molecular structures of fluoro-containing vitamin D3 analogues and their synthetic methodologies.


Asunto(s)
Compuestos de Flúor/síntesis química , Vitamina D/análogos & derivados , Vitamina D/síntesis química
17.
J Biol Chem ; 296: 100668, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33865853

RESUMEN

CYP24A1-deficient (Cyp24a1 KO) rats were generated using the CRISPER/Cas9 system to investigate CYP24A1-dependent or -independent metabolism of 25(OH)D3, the prohormone of calcitriol. Plasma 25(OH)D3 concentrations in Cyp24a1 KO rats were approximately twofold higher than in wild-type rats. Wild-type rats showed five metabolites of 25(OH)D3 in plasma following oral administration of 25(OH)D3, and these metabolites were not detected in Cyp24a1 KO rats. Among these metabolites, 25(OH)D3-26,23-lactone was identified as the second major metabolite with a significantly higher Tmax value than others. When 23S,25(OH)2D3 was administered to Cyp24a1 KO rats, neither 23,25,26(OH)3D3 nor 25(OH)D3-26,23-lactone was observed. However, when 23S,25R,26(OH)3D3 was administered to Cyp24a1 KO rats, plasma 25(OH)D3-26,23-lactone was detected. These results suggested that CYP24A1 is responsible for the conversion of 25(OH)D3 to 23,25,26(OH)3D3 via 23,25(OH)2D3, but enzyme(s) other than CYP24A1 may be involved in the conversion of 23,25,26(OH)3D3 to 25(OH)D3-26,23-lactone. Enzymatic studies using recombinant human CYP species and the inhibitory effects of ketoconazole suggested that CYP3A plays an essential role in the conversion of 23,25,26(OH)3D3 into 25(OH)D3-26,23-lactone in both rats and humans. Taken together, our data indicate that Cyp24a1 KO rats are valuable for metabolic studies of vitamin D and its analogs. In addition, long-term administration of 25(OH)D3 to Cyp24a1 KO rats at 110 µg/kg body weight/day resulted in significant weight loss and ectopic calcification. Thus, Cyp24a1 KO rats could represent an important model for studying renal diseases originating from CYP24A1 dysfunction.


Asunto(s)
Sistemas CRISPR-Cas , Calcifediol/metabolismo , Citocromo P-450 CYP3A/metabolismo , Metaboloma/efectos de los fármacos , Vitamina D3 24-Hidroxilasa/antagonistas & inhibidores , Vitaminas/metabolismo , Animales , Animales Modificados Genéticamente , Calcifediol/administración & dosificación , Ratas , Vitamina D3 24-Hidroxilasa/genética , Vitamina D3 24-Hidroxilasa/metabolismo , Vitaminas/administración & dosificación
18.
J Med Chem ; 64(9): 5689-5709, 2021 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-33899473

RESUMEN

Vitamin D3 metabolites inhibit the expression of lipogenic genes by impairing sterol regulatory element-binding protein (SREBP), a master transcription factor of lipogenesis, independent of their canonical activity through a vitamin D receptor (VDR). Herein, we designed and synthesized a series of vitamin D derivatives to search for a drug-like small molecule that suppresses the SREBP-induced lipogenesis without affecting the VDR-controlled calcium homeostasis in vivo. Evaluation of the derivatives in cultured cells and mice led to the discovery of VDR-silent SREBP inhibitors and to the development of KK-052 (50), the first vitamin D-based SREBP inhibitor that has been demonstrated to mitigate hepatic lipid accumulation without calcemic action in mice. KK-052 maintained the ability of 25-hydroxyvitamin D3 to induce the degradation of SREBP but lacked in the VDR-mediated activity. KK-052 serves as a valuable compound for interrogating SREBP/SCAP in vivo and may represent an unprecedented translational opportunity of synthetic vitamin D analogues.


Asunto(s)
Diseño de Fármacos , Proteínas de Unión a los Elementos Reguladores de Esteroles/metabolismo , Vitamina D/análogos & derivados , Animales , Peso Corporal/efectos de los fármacos , Células CHO , Cricetinae , Cricetulus , Reacción de Cicloadición , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Hígado Graso/tratamiento farmacológico , Humanos , Péptidos y Proteínas de Señalización Intracelular/antagonistas & inhibidores , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Lipogénesis/efectos de los fármacos , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Receptores de Calcitriol/antagonistas & inhibidores , Receptores de Calcitriol/metabolismo , Proteínas de Unión a los Elementos Reguladores de Esteroles/antagonistas & inhibidores , Proteínas de Unión a los Elementos Reguladores de Esteroles/genética , Vitamina D/metabolismo , Vitamina D/farmacología , Vitamina D/uso terapéutico
19.
Bioorg Med Chem Lett ; 39: 127850, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33662538

RESUMEN

We report the synthesis of a peptide nucleic acid (PNA) monomer containing preQ1, a positively charged guanine analogue. The new monomer was incorporated into PNA oligomers using standard Fmoc-chemistry-based solid-phase synthesis. The preQ1 unit-containing PNA oligomers exhibited improved affinity for their complementary DNA through electrostatic attraction, and their sequence specificity was not compromised. It could be beneficial to incorporate preQ1 into PNA oligomers instead of guanine when creating antisense/antigene agents or research tools.


Asunto(s)
Ácidos Nucleicos de Péptidos/síntesis química , Pirimidinonas/química , Pirroles/química , Estructura Molecular , Ácidos Nucleicos de Péptidos/química
20.
Biophys Chem ; 270: 106540, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33418104

RESUMEN

The specific binding of active vitamin-D to the vitamin-D receptor (VDR) is closely related to the onset of immunological diseases. To inhibit the binding, various compounds have been developed as potent inhibitors against VDR. Among them, a compound NS-54c, which was developed based on the first VDR antagonist TEI-9647 (25-dehydro-1α-hydroxyvitamin D3-26,23-lactone), was revealed to posse almost 1000-fold improved antagonistic activity over the original TEI-9647. However, the reason for this significant improvement has not been elucidated. In the present study, we investigated the specific interactions between VDR and these inhibitors, using molecular simulations based on molecular docking, molecular mechanics and ab initio fragment molecular orbital calculations. Based on the results simulated, we furthermore proposed novel inhibitors and investigated their binding properties to VDR. The results elucidate that the replacement of propyl group at the 24th site of NS-54c by a phenethyl group can enhance the binding affinity of the inhibitor to VDR. This finding provides useful information for developing novel potent inhibitors against VDR.


Asunto(s)
Calcitriol/análogos & derivados , Receptores de Calcitriol/antagonistas & inhibidores , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Calcitriol/química , Calcitriol/farmacología , Diseño de Fármacos , Descubrimiento de Drogas , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Receptores de Calcitriol/química , Receptores de Calcitriol/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA