Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 30
1.
J Clin Invest ; 132(13)2022 07 01.
Article En | MEDLINE | ID: mdl-35775482

Defining mechanism(s) that maintain tissue stem quiescence is important for improving tissue regeneration, cell therapies, aging, and cancer. We report here that genetic ablation of Id2 in adult hematopoietic stem cells (HSCs) promotes increased HSC activation and differentiation, which results in HSC exhaustion and bone marrow failure over time. Id2Δ/Δ HSCs showed increased cycling, ROS production, mitochondrial activation, ATP production, and DNA damage compared with Id2+/+ HSCs, supporting the conclusion that Id2Δ/Δ HSCs are less quiescent. Mechanistically, HIF-1α expression was decreased in Id2Δ/Δ HSCs, and stabilization of HIF-1α in Id2Δ/Δ HSCs restored HSC quiescence and rescued HSC exhaustion. Inhibitor of DNA binding 2 (ID2) promoted HIF-1α expression by binding to the von Hippel-Lindau (VHL) protein and interfering with proteasomal degradation of HIF-1α. HIF-1α promoted Id2 expression and enforced a positive feedback loop between ID2 and HIF-1α to maintain HSC quiescence. Thus, sustained ID2 expression could protect HSCs during stress and improve HSC expansion for gene editing and cell therapies.


Hematopoietic Stem Cells , Mitochondria , Hematopoietic Stem Cells/metabolism , Mitochondria/metabolism
2.
Nat Commun ; 13(1): 1751, 2022 04 01.
Article En | MEDLINE | ID: mdl-35365640

The interaction between tumor suppressor BRCA2 and DSS1 is essential for RAD51 recruitment and repair of DNA double stand breaks (DSBs) by homologous recombination (HR). We have generated mice with a leucine to proline substitution at position 2431 of BRCA2, which disrupts this interaction. Although a significant number of mutant mice die during embryogenesis, some homozygous and hemizygous mutant mice undergo normal postnatal development. Despite lack of radiation induced RAD51 foci formation and a severe HR defect in somatic cells, mutant mice are fertile and exhibit normal RAD51 recruitment during meiosis. We hypothesize that the presence of homologous chromosomes in close proximity during early prophase I may compensate for the defect in BRCA2-DSS1 interaction. We show the restoration of RAD51 foci in mutant cells when Topoisomerase I inhibitor-induced single strand breaks are converted into DSBs during DNA replication. We also partially rescue the HR defect by tethering the donor DNA to the site of DSBs using streptavidin-fused Cas9. Our findings demonstrate that the BRCA2-DSS1 complex is dispensable for RAD51 loading when the homologous DNA is close to the DSB.


DNA Breaks, Double-Stranded , Rad51 Recombinase , Animals , DNA , DNA Repair/genetics , Homologous Recombination , Mice , Rad51 Recombinase/genetics , Rad51 Recombinase/metabolism
3.
Cancer Res ; 81(23): 5977-5990, 2021 12 01.
Article En | MEDLINE | ID: mdl-34642183

The relationship between cancer and autoimmunity is complex. However, the incidence of solid tumors such as melanoma has increased significantly among patients with previous or newly diagnosed systemic autoimmune disease (AID). At the same time, immune checkpoint blockade (ICB) therapy of cancer induces de novo autoinflammation and exacerbates underlying AID, even without evident antitumor responses. Recently, systemic lupus erythematosus (SLE) activity was found to drive myeloid-derived suppressor cell (MDSC) formation in patients, a known barrier to healthy immune surveillance and successful cancer immunotherapy. Cross-talk between MDSCs and macrophages generally drives immune suppressive activity in the tumor microenvironment. However, it remains unclear how peripheral pregenerated MDSC under chronic inflammatory conditions modulates global macrophage immune functions and the impact it could have on existing tumors and underlying lupus nephritis. Here we show that pathogenic expansion of SLE-generated MDSCs by melanoma drives global macrophage polarization and simultaneously impacts the severity of lupus nephritis and tumor progression in SLE-prone mice. Molecular and functional data showed that MDSCs interact with autoimmune macrophages and inhibit cell surface expression of CD40 and the production of IL27. Moreover, low CD40/IL27 signaling in tumors correlated with high tumor-associated macrophage infiltration and ICB therapy resistance both in murine and human melanoma exhibiting active IFNγ signatures. These results suggest that preventing global macrophage reprogramming induced by MDSC-mediated inhibition of CD40/IL27 signaling provides a precision melanoma immunotherapy strategy, supporting an original and advantageous approach to treat solid tumors within established autoimmune landscapes. SIGNIFICANCE: Myeloid-derived suppressor cells induce macrophage reprogramming by suppressing CD40/IL27 signaling to drive melanoma progression, simultaneously affecting underlying autoimmune disease and facilitating resistance to immunotherapy within preexisting autoimmune landscapes.


Autoimmunity , CD40 Antigens/metabolism , Interleukin-27/metabolism , Lupus Erythematosus, Systemic/physiopathology , Macrophages/pathology , Melanoma/pathology , Myeloid-Derived Suppressor Cells/pathology , Animals , Immunotherapy , Macrophages/immunology , Macrophages/metabolism , Melanoma/immunology , Melanoma/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Myeloid-Derived Suppressor Cells/immunology , Myeloid-Derived Suppressor Cells/metabolism , Tumor Microenvironment
4.
J Biol Chem ; 296: 100491, 2021.
Article En | MEDLINE | ID: mdl-33662400

Serine palmitoyltransferase complex (SPT) mediates the first and rate-limiting step in the de novo sphingolipid biosynthetic pathway. The larger subunits SPTLC1 and SPTLC2/SPTLC3 together form the catalytic core while a smaller third subunit either SSSPTA or SSSPTB has been shown to increase the catalytic efficiency and provide substrate specificity for the fatty acyl-CoA substrates. The in vivo biological significance of these smaller subunits in mammals is still unknown. Here, using two null mutants, a conditional null for ssSPTa and a null mutant for ssSPTb, we show that SSSPTA is essential for embryogenesis and mediates much of the known functions of the SPT complex in mammalian hematopoiesis. The ssSPTa null mutants are embryonic lethal at E6.5 much like the Sptlc1 and Sptlc2 null alleles. Mx1-Cre induced deletion of ssSPTa leads to lethality and myelopoietic defect. Chimeric and competitive bone marrow transplantation experiments show that the defect in myelopoiesis is accompanied by an expansion of the Lin-Sca1+c-Kit+ stem and progenitor compartment. Progenitor cells that fail to differentiate along the myeloid lineage display evidence of endoplasmic reticulum stress. On the other hand, ssSPTb null mice are homozygous viable, and analyses of the bone marrow cells show no significant difference in the proliferation and differentiation of the adult hematopoietic compartment. SPTLC1 is an obligatory subunit for the SPT function, and because Sptlc1-/- and ssSPTa-/- mice display similar defects during development and hematopoiesis, we conclude that an SPT complex that includes SSSPTA mediates much of its developmental and hematopoietic functions in a mammalian model.


Acyl Coenzyme A/metabolism , Bone Marrow Cells/cytology , Hematopoiesis/physiology , Serine C-Palmitoyltransferase/genetics , Sphingolipids/biosynthesis , Animals , Bone Marrow Cells/metabolism , Catalytic Domain , Cell Differentiation/physiology , Mice , Mice, Inbred C57BL , Mice, Knockout , Serine C-Palmitoyltransferase/metabolism , Substrate Specificity
5.
Proc Natl Acad Sci U S A ; 117(33): 20100-20108, 2020 08 18.
Article En | MEDLINE | ID: mdl-32727902

Mutation of HELLS (Helicase, Lymphoid-Specific)/Lsh in human DNA causes a severe immunodeficiency syndrome, but the nature of the defect remains unknown. We assessed here the role of Lsh in hematopoiesis using conditional Lsh knockout mice with expression of Mx1 or Vav Cre-recombinase. Bone marrow transplantation studies revealed that Lsh depletion in hematopoietic stem cells severely reduced B cell numbers and impaired B cell development in a hematopoietic cell-autonomous manner. Lsh-deficient mice without bone marrow transplantation exhibited lower Ig levels in vivo compared to controls despite normal peripheral B cell numbers. Purified B lymphocytes proliferated normally but produced less immunoglobulins in response to in vitro stimulation, indicating a reduced capacity to undergo class switch recombination (CSR). Analysis of germline transcripts, examination of double-stranded breaks using biotin-labeling DNA break assay, and End-seq analysis indicated that the initiation of the recombination process was unscathed. In contrast, digestion-circularization PCR analysis and high-throughput sequencing analyses of CSR junctions and a chromosomal break repair assay indicated an impaired ability of the canonical end-joining pathway in Lsh-deficient B cells. Our data suggest a hematopoietic cell-intrinsic role of Lsh in B cell development and in CSR providing a potential target for immunodeficiency therapy.


B-Lymphocytes/physiology , DNA Helicases/metabolism , Immunoglobulins/metabolism , Animals , Cell Line , DNA Helicases/genetics , Gene Silencing , Humans , Immunoglobulins/genetics , Mice , Mice, Knockout , Mutation
6.
Mol Cell Biol ; 40(18)2020 08 28.
Article En | MEDLINE | ID: mdl-32631902

hRpn13/ADRM1 links substrate recruitment with deubiquitination at the proteasome through its proteasome- and ubiquitin-binding Pru domain and DEUBAD domain, which binds and activates deubiquitinating enzyme (DUB) UCHL5/Uch37. Here, we edit the HCT116 colorectal cancer cell line to delete part of the hRpn13 Pru, producing cells that express truncated hRpn13 (trRpn13), which is competent for UCHL5 binding but defective for proteasome interaction. trRpn13 cells demonstrate reduced levels of proteasome-bound ubiquitinated proteins, indicating that the loss of hRpn13 function at proteasomes cannot be fully compensated for by the two other dedicated substrate receptors (hRpn1 and hRpn10). Previous studies indicated that the loss of full-length hRpn13 causes a corresponding reduction of UCHL5. We find UCHL5 levels unaltered in trRpn13 cells, but hRpn11 is elevated in ΔhRpn13 and trRpn13 cells, perhaps from cell stress. Despite the ∼90 DUBs in human cells, including two others in addition to UCHL5 at the proteasome, we found deletion of UCHL5 from HCT116 cells to cause increased levels of ubiquitinated proteins in whole-cell extract and at proteasomes, suggesting that UCHL5 activity cannot be fully assumed by other DUBs. We also report anticancer molecule RA190, which binds covalently to hRpn13 and UCHL5, to require hRpn13 Pru and not UCHL5 for cytotoxicity.


Intracellular Signaling Peptides and Proteins/metabolism , Molecular Chaperones/metabolism , Ubiquitin Thiolesterase/metabolism , Amino Acid Sequence , Binding Sites , Cytoplasm/metabolism , HCT116 Cells , Humans , Intracellular Signaling Peptides and Proteins/genetics , Membrane Glycoproteins/metabolism , Molecular Chaperones/genetics , Proteasome Endopeptidase Complex/metabolism , Protein Binding , Ubiquitin/metabolism , Ubiquitin Thiolesterase/genetics , Ubiquitinated Proteins/metabolism
7.
Cell Rep ; 31(4): 107572, 2020 04 28.
Article En | MEDLINE | ID: mdl-32348770

Investigating mechanisms that regulate endothelial cell (EC) growth and survival is important for understanding EC homeostasis and how ECs maintain stem cell niches. We report here that targeted loss of Id genes in adult ECs results in dilated, leaky sinusoids and a pro-inflammatory state that increases in severity over time. Disruption in sinusoidal integrity leads to increased hematopoietic stem cell (HSC) proliferation, differentiation, migration, and exhaustion. Mechanistically, sinusoidal ECs (SECs) show increased apoptosis because of reduced Bcl2-family gene expression following Id gene ablation. Furthermore, Id1-/-Id3-/- SECs and upstream type H vessels show increased expression of cyclin-dependent kinase inhibitors p21 and p27 and impaired ability to proliferate, which is rescued by reducing E2-2 expression. Id1-/-Id3-/- mice do not survive sublethal irradiation because of impaired vessel regeneration and hematopoietic failure. Thus, Id genes are required for the survival and regeneration of BM SECs during homeostasis and stress to maintain HSC development.


Inhibitor of Differentiation Protein 1/metabolism , Inhibitor of Differentiation Proteins/metabolism , Animals , Cell Survival/physiology , Disease Models, Animal , Endothelial Cells/metabolism , Endothelial Cells/physiology , Female , Hematopoiesis/physiology , Humans , Male , Mice , Mice, Inbred C57BL , Regeneration/physiology
8.
Blood Adv ; 3(22): 3635-3649, 2019 11 26.
Article En | MEDLINE | ID: mdl-31751474

Serine palmitoyltransferase (SPT) long-chain base subunit 1 (SPTLC1) is 1 of the 2 main catalytic subunits of the SPT complex, which catalyzes the first and rate-limiting step of sphingolipid biosynthesis. Here, we show that Sptlc1 deletion in adult bone marrow (BM) cells results in defective myeloid differentiation. In chimeric mice from noncompetitive BM transplant assays, there was an expansion of the Lin- c-Kit+ Sca-1+ compartment due to increased multipotent progenitor production, but myeloid differentiation was severely compromised. We also show that defective biogenesis of sphingolipids in the endoplasmic reticulum (ER) leads to ER stress that affects myeloid differentiation. Furthermore, we demonstrate that transient accumulation of fatty acid, a substrate for sphingolipid biosynthesis, could be partially responsible for the ER stress. Independently, we find that ER stress in general, such as that induced by the chemical thapsigargin or the fatty acid palmitic acid, compromises myeloid differentiation in culture. These results identify perturbed sphingolipid metabolism as a source of ER stress, which may produce diverse pathological effects related to differential cell-type sensitivity.


Cell Differentiation/genetics , Hematopoiesis/genetics , Homeostasis , Myeloid Cells/cytology , Myeloid Cells/metabolism , Serine C-Palmitoyltransferase/genetics , Animals , Bone Marrow Cells/cytology , Bone Marrow Cells/metabolism , Computational Biology/methods , Gene Deletion , Gene Expression Profiling , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Humans , Mice , Mice, Knockout , Myeloid Progenitor Cells/cytology , Myeloid Progenitor Cells/metabolism , Spleen/cytology , Spleen/metabolism
9.
Cell Stem Cell ; 23(2): 252-265.e8, 2018 Aug 02.
Article En | MEDLINE | ID: mdl-30082068

Defining mechanisms that maintain tissue stem cells during homeostasis, stress, and aging is important for improving tissue regeneration and repair and enhancing cancer therapies. Here, we show that Id1 is induced in hematopoietic stem cells (HSCs) by cytokines that promote HSC proliferation and differentiation, suggesting that it functions in stress hematopoiesis. Genetic ablation of Id1 increases HSC self-renewal in serial bone marrow transplantation (BMT) assays, correlating with decreases in HSC proliferation, mitochondrial biogenesis, and reactive oxygen species (ROS) production. Id1-/- HSCs have a quiescent molecular signature and harbor less DNA damage than control HSCs. Cytokines produced in the hematopoietic microenvironment after γ-irradiation induce Id1 expression. Id1-/- HSCs display a blunted proliferative response to such cytokines and other inducers of chronic proliferation including genotoxic and inflammatory stress and aging, protecting them from chronic stress and exhaustion. Thus, targeting Id1 may be therapeutically useful for improving HSC survival and function during BMT, chronic stress, and aging.


Aging/metabolism , Hematopoietic Stem Cells/metabolism , Inhibitor of Differentiation Protein 1/deficiency , Stress, Physiological , Animals , Cells, Cultured , Inhibitor of Differentiation Protein 1/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout
10.
Cell Rep ; 23(11): 3236-3248, 2018 06 12.
Article En | MEDLINE | ID: mdl-29898395

Fetal globin genes are transcriptionally silenced during embryogenesis through hemoglobin switching. Strategies to derepress fetal globin expression in the adult could alleviate symptoms in sickle cell disease and ß-thalassemia. We identified a zinc-finger protein, pogo transposable element with zinc-finger domain (POGZ), expressed in hematopoietic progenitor cells. Targeted deletion of Pogz in adult hematopoietic cells in vivo results in persistence of embryonic ß-like globin expression without affecting erythroid development. POGZ binds to the Bcl11a promoter and erythroid-specific intragenic regulatory regions. Pogz+/- mice show elevated embryonic ß-like globin expression, suggesting that partial reduction of Pogz expression results in persistence of embryonic ß-like globin expression. Knockdown of POGZ in primary human CD34+ progenitor cell-derived erythroblasts reduces BCL11A expression, a known repressor of embryonic ß-like globin expression, and increases fetal hemoglobin expression. These findings are significant, since new therapeutic targets and strategies are needed to treat ß-globin disorders.


Fetal Hemoglobin/metabolism , Transposases/genetics , beta-Globins/genetics , Animals , Carrier Proteins/antagonists & inhibitors , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cell Differentiation , Embryo, Mammalian/metabolism , Embryonic Development , Erythroblasts/cytology , Erythroblasts/metabolism , Fetal Hemoglobin/genetics , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Nuclear Proteins/antagonists & inhibitors , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Promoter Regions, Genetic , RNA Interference , RNA, Small Interfering/metabolism , Repressor Proteins , Transposases/antagonists & inhibitors , Transposases/metabolism , beta-Globins/metabolism
11.
Cancer Cell ; 31(4): 501-515.e8, 2017 04 10.
Article En | MEDLINE | ID: mdl-28399408

Targeting the tumor vasculature with antibody-drug conjugates (ADCs) is a promising anti-cancer strategy that in order to be realized must overcome several obstacles, including identification of suitable targets and optimal warheads. Here, we demonstrate that the cell-surface protein CD276/B7-H3 is broadly overexpressed by multiple tumor types on both cancer cells and tumor-infiltrating blood vessels, making it a potentially ideal dual-compartment therapeutic target. In preclinical studies CD276 ADCs armed with a conventional MMAE warhead destroyed CD276-positive cancer cells, but were ineffective against tumor vasculature. In contrast, pyrrolobenzodiazepine-conjugated CD276 ADCs killed both cancer cells and tumor vasculature, eradicating large established tumors and metastases, and improving long-term overall survival. CD276-targeted dual-compartment ablation could aid in the development of highly selective broad-acting anti-cancer therapies.


B7 Antigens/genetics , B7 Antigens/metabolism , Immunoconjugates/pharmacology , Neoplasms/blood supply , Animals , Antineoplastic Agents/immunology , Antineoplastic Agents/pharmacology , B7 Antigens/immunology , Benzodiazepines/pharmacology , Blood Vessels/metabolism , Blood Vessels/pathology , Cell Line, Tumor , Endothelium, Vascular/drug effects , Endothelium, Vascular/pathology , Female , Humans , Immunoconjugates/immunology , Male , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Molecular Targeted Therapy/methods , Neoplasms/pathology , Neoplasms/therapy , Oligopeptides/pharmacology , Pyrroles/pharmacology , Rabbits
12.
PLoS One ; 12(2): e0171510, 2017.
Article En | MEDLINE | ID: mdl-28158249

Thymic epithelial cells (TEC), as part of thymic stroma, provide essential growth factors/cytokines and self-antigens to support T cell development and selection. Deletion of Rb family proteins in adult thymic stroma leads to T cell hyperplasia in vivo. To determine whether deletion of Rb specifically in keratin (K) 18 positive TEC was sufficient for thymocyte hyperplasia, we conditionally inactivated Rb and its family members p107 and p130 in K18+ TEC in genetically engineered mice (TgK18GT121; K18 mice). We found that thymocyte hyperproliferation was induced in mice with Rb inactivation in K18+ TEC, while normal T cell development was maintained; suggesting that inactivation of Rb specifically in K18+ TEC was sufficient and responsible for the phenotype. Transplantation of wild type bone marrow cells into mice with Rb inactivation in K18+ TEC resulted in donor T lymphocyte hyperplasia confirming the non-cell autonomous requirement for Rb proteins in K18+ TEC in regulating T cell proliferation. Our data suggests that thymic epithelial cells play an important role in regulating lymphoid proliferation and thymus size.


Cell Proliferation , Keratin-18/metabolism , Retinoblastoma Protein/physiology , T-Lymphocytes/cytology , Thymus Gland/cytology , Animals , Female , Gene Expression , Male , Mice , Mice, Transgenic , Retinoblastoma Protein/genetics , Stromal Cells/metabolism , T-Lymphocytes/immunology , Thymus Gland/immunology , Thymus Gland/metabolism , Transgenes
13.
Oncotarget ; 7(51): 85109-85123, 2016 Dec 20.
Article En | MEDLINE | ID: mdl-27835883

c-Kit is a tyrosine kinase receptor important for gametogenesis, hematopoiesis, melanogenesis and mast cell biology. Dysregulation of c-Kit function is oncogenic and its expression in the stem cell niche of a number of tissues has underlined its relevance for regenerative medicine and hematopoietic stem cell biology. Yet, very little is known about the mechanisms that control c-Kit protein levels. Here we show that the RanBPM/RanBP9 scaffold protein binds to c-Kit and is necessary for normal c-Kit protein expression in the mouse testis and subset lineages of the hematopoietic system. RanBPM deletion causes a reduction in c-Kit protein but not its mRNA suggesting a posttranslational mechanism. This regulation is specific to the c-Kit receptor since RanBPM reduction does not affect other membrane proteins examined. Importantly, in both mouse hematopoietic system and testis, RanBPM deficiency causes defects consistent with c-Kit loss of expression suggesting that RanBPM is an important regulator of c-Kit function. The finding that this regulatory mechanism is also present in human cells expressing endogenous RanBPM and c-Kit suggests a potential new strategy to target oncogenic c-Kit in malignancies.


Adaptor Proteins, Signal Transducing/metabolism , Bone Marrow Cells/metabolism , Cytoskeletal Proteins/metabolism , Germ Cells/metabolism , Nuclear Proteins/metabolism , Proto-Oncogene Proteins c-kit/metabolism , Stem Cells/metabolism , Testis/pathology , Adaptor Proteins, Signal Transducing/genetics , Animals , Bone Marrow Cells/pathology , Cell Differentiation , Cytoskeletal Proteins/genetics , Gene Expression Regulation , Germ Cells/pathology , HEK293 Cells , Humans , Male , Mice , Mice, Knockout , Nuclear Proteins/genetics , Protein Binding , Proto-Oncogene Proteins c-kit/genetics , RNA, Small Interfering/genetics , Stem Cells/pathology
14.
Nat Commun ; 7: 12425, 2016 08 08.
Article En | MEDLINE | ID: mdl-27498558

Poly (ADP-ribose) polymerase (PARP) inhibitor (PARPi) olaparib has been approved for treatment of advanced ovarian cancer associated with BRCA1 and BRCA2 mutations. BRCA1- and BRCA2-mutated cells, which are homologous recombination (HR) deficient, are hypersensitive to PARPi through the mechanism of synthetic lethality. Here we examine the effect of PARPi on HR-proficient cells. Olaparib pretreatment, PARP1 knockdown or Parp1 heterozygosity of Brca2(cko/ko) mouse embryonic stem cells (mESCs), carrying a null (ko) and a conditional (cko) allele of Brca2, results in viable Brca2(ko/ko) cells. PARP1 deficiency does not restore HR in Brca2(ko/ko) cells, but protects stalled replication forks from MRE11-mediated degradation through its impaired recruitment. The functional consequence of Parp1 heterozygosity on BRCA2 loss is demonstrated by a significant increase in tumorigenesis in Brca2(cko/cko) mice. Thus, while olaparib efficiently kills BRCA2-deficient cells, we demonstrate that it can also contribute to the synthetic viability if PARP is inhibited before BRCA2 loss.


BRCA2 Protein/deficiency , Poly (ADP-Ribose) Polymerase-1/deficiency , Animals , BRCA2 Protein/metabolism , Cell Survival/drug effects , DNA Replication/drug effects , Hematopoietic Stem Cells/drug effects , Hematopoietic Stem Cells/metabolism , Homologous Recombination/drug effects , Humans , Integrases/metabolism , MRE11 Homologue Protein/metabolism , Mice , Models, Biological , Mouse Embryonic Stem Cells/cytology , Mouse Embryonic Stem Cells/drug effects , Mouse Embryonic Stem Cells/metabolism , Poly (ADP-Ribose) Polymerase-1/antagonists & inhibitors , Poly (ADP-Ribose) Polymerase-1/metabolism , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology
15.
Stem Cells ; 34(4): 1068-82, 2016 Apr.
Article En | MEDLINE | ID: mdl-27095138

Folliculin (FLCN) is an autosomal dominant tumor suppressor gene that modulates diverse signaling pathways required for growth, proliferation, metabolism, survival, motility, and adhesion. FLCN is an essential protein required for murine embryonic development, embryonic stem cell (ESC) commitment, and Drosophila germline stem cell maintenance, suggesting that Flcn may be required for adult stem cell homeostasis. Conditional inactivation of Flcn in adult hematopoietic stem/progenitor cells (HSPCs) drives hematopoietic stem cells (HSC) into proliferative exhaustion resulting in the rapid depletion of HSPC, loss of all hematopoietic cell lineages, acute bone marrow (BM) failure, and mortality after 40 days. HSC that lack Flcn fail to reconstitute the hematopoietic compartment in recipient mice, demonstrating a cell-autonomous requirement for Flcn in HSC maintenance. BM cells showed increased phosphorylation of Akt and mTorc1, and extramedullary hematopoiesis was significantly reduced by treating mice with rapamycin in vivo, suggesting that the mTorc1 pathway was activated by loss of Flcn expression in hematopoietic cells in vivo. Tfe3 was activated and preferentially localized to the nucleus of Flcn knockout (KO) HSPCs. Tfe3 overexpression in HSPCs impaired long-term hematopoietic reconstitution in vivo, recapitulating the Flcn KO phenotype, and supporting the notion that abnormal activation of Tfe3 contributes to the Flcn KO phenotype. Flcn KO mice develop an acute histiocytic hyperplasia in multiple organs, suggesting a novel function for Flcn in macrophage development. Thus, Flcn is intrinsically required to maintain adult HSC quiescence and homeostasis, and Flcn loss leads to BM failure and mortality in mice.


Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Cell Differentiation/genetics , Estrone/genetics , Hematopoietic Stem Cells/pathology , Animals , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Bone Marrow Cells/pathology , Cell Lineage/genetics , Cell Proliferation/genetics , Embryonic Development/genetics , Hematopoietic Stem Cells/metabolism , Homeostasis/genetics , Macrophages/metabolism , Macrophages/pathology , Mice , Mice, Knockout
16.
Hum Mol Genet ; 25(10): 1934-1945, 2016 05 15.
Article En | MEDLINE | ID: mdl-26920070

The breast cancer gene, BRCA2, is essential for viability, yet patients with Fanconi anemia-D1 subtype are born alive with biallelic mutations in this gene. The hypomorphic nature of the mutations is believed to support viability, but this is not always apparent. One such mutation is IVS7+2T>G, which causes premature protein truncation due to skipping of exon 7. We previously identified a transcript lacking exons 4-7, which restores the open-reading frame, encodes a DNA repair proficient protein and is expressed in IVS7+2T>G carriers. However, because the exons 4-7 encoded region contains several residues required for normal cell-cycle regulation and cytokinesis, this transcript's ability to support viability can be argued. To address this, we generated a Brca2 knock-in mouse model lacking exons 4-7 and demonstrated that these exons are dispensable for viability as well as tumor-free survival. This study provides the first in vivo evidence of the functional significance of a minor transcript of BRCA2 that can play a major role in the survival of humans who are homozygous for a clearly pathogenic mutation. Our results highlight the importance of assessing protein function restoration by premature truncating codon bypass by alternative splicing when evaluating the functional significance of variants such as nonsense and frame-shift mutations that are assumed to be clearly pathogenic. Our findings will impact not only the assessment of variants that map to this region, but also influence counseling paradigms and treatment options for such mutation carriers.


BRCA2 Protein/genetics , Breast Neoplasms/genetics , Fanconi Anemia/genetics , Genetic Predisposition to Disease , Alternative Splicing/genetics , Animals , Breast Neoplasms/pathology , Exons/genetics , Fanconi Anemia/pathology , Gene Knock-In Techniques , Germ-Line Mutation , Humans , Mice , Mutation , Pedigree , RNA Splice Sites
17.
Blood ; 124(10): 1586-96, 2014 Sep 04.
Article En | MEDLINE | ID: mdl-25051963

Growth factor independence 1 (Gfi-1) is a part of the transcriptional network that regulates the development of adult hematopoietic stem and progenitor cells. Gfi-1-null (Gfi-1(-/-)) mice have reduced numbers of hematopoietic stem cells (HSCs), impaired radioprotective function of hematopoietic progenitor cells (HPCs), and myeloid and erythroid hyperplasia. We found that the development of HPCs and erythropoiesis, but not HSC function, was rescued by reducing the expression of inhibitor of DNA-binding protein 2 (Id2) in Gfi-1(-/-) mice. Analysis of Gfi-1(-/-);Id2(+/-) mice revealed that short-term HSCs, common myeloid progenitors (CMPs), erythroid burst-forming units, colony-forming units in spleen, and more differentiated red cells were partially restored by reducing Id2 levels in Gfi-1(-/-) mice. Moreover, short-term reconstituting cells, and, to a greater extent, CMP and megakaryocyte-erythroid progenitor development, and red blood cell production (anemia) were rescued in mice transplanted with Gfi-1(-/-);Id2(+/-) bone marrow cells (BMCs) in comparison with Gfi-1(-/-) BMCs. Reduction of Id2 expression in Gfi-1(-/-) mice increased the expression of Gata1, Eklf, and EpoR, which are required for proper erythropoiesis. Reducing the levels of other Id family members (Id1 and Id3) in Gfi-1(-/-) mice did not rescue impaired HPC function or erythropoiesis. These data provide new evidence that Gfi-1 is linked to the erythroid gene regulatory network by repressing Id2 expression.


DNA-Binding Proteins/physiology , Erythropoiesis/genetics , Gene Regulatory Networks , Hematopoietic Stem Cells/metabolism , Inhibitor of Differentiation Protein 2/genetics , Transcription Factors/genetics , Animals , Cell Differentiation/genetics , Cells, Cultured , Down-Regulation/genetics , Erythroid Precursor Cells/physiology , Mice , Mice, Inbred C57BL , Mice, Knockout , Transcription Factors/metabolism , Transcription Factors/physiology
18.
J Exp Med ; 210(5): 987-1001, 2013 May 06.
Article En | MEDLINE | ID: mdl-23630229

The (histone) deacetylase Sirt1 is a mediator of genomic and epigenetic maintenance, both of which are critical aspects of stem cell homeostasis and tightly linked to their functional decline in aging and disease. We show that Sirt1 ablation in adult hematopoietic stem and progenitor cells (HSPCs) promotes aberrant HSPC expansion specifically under conditions of hematopoietic stress, which is associated with genomic instability as well as the accumulation of DNA damage and eventually results in a loss of long-term progenitors. We further demonstrate that progenitor cell expansion is mechanistically linked to the selective up-regulation of the HSPC maintenance factor and polycomb target gene Hoxa9. We show that Sirt1 binds to the Hoxa9 gene, counteracts acetylation of its histone target H4 lysine 16, and in turn promotes polycomb-specific repressive histone modification. Together, these findings demonstrate a dual role for Sirt1 in HSPC homeostasis, both via epigenetic regulation of a key developmental gene and by promoting genome stability in adult stem cells.


Epigenesis, Genetic , Gene Deletion , Genome/genetics , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Sirtuin 1/genetics , Stress, Physiological/genetics , Adult Stem Cells/cytology , Adult Stem Cells/metabolism , Animals , Bone Marrow Transplantation , Cell Proliferation , Chromatin/metabolism , Cytoprotection/genetics , DNA Damage/genetics , Genetic Loci/genetics , Genomic Instability/genetics , Histones/metabolism , Homeodomain Proteins/metabolism , Mice , Mice, Inbred C57BL , Models, Biological , Protein Binding/genetics , Sirtuin 1/deficiency , Sirtuin 1/metabolism , Tumor Suppressor Protein p53/metabolism
19.
Nat Commun ; 4: 1662, 2013.
Article En | MEDLINE | ID: mdl-23575666

Toll-like receptor 4 (Tlr4) has a pivotal role in innate immune responses, and the transcription factor CCAAT/enhancer binding protein delta (C/EBPδ, Cebpd) is a Tlr4-induced gene. Here we identify a positive feedback loop in which C/EBPδ activates Tlr4 gene expression in macrophages and tumour cells. In addition, we discovered a negative feedback loop whereby the tumour suppressor FBXW7α (FBW7, Cdc4), whose gene expression is inhibited by C/EBPδ, targets C/EBPδ for degradation when C/EBPδ is phosphorylated by GSK-3ß. Consequently, FBXW7α suppresses Tlr4 expression and responses to the ligand lipopolysaccharide. FBXW7α depletion alone is sufficient to augment pro-inflammatory signalling in vivo. Moreover, as inflammatory pathways are known to modulate tumour biology, Cebpd null mammary tumours, which have reduced metastatic potential, show altered expression of inflammation-associated genes. Together, these findings reveal a role for C/EBPδ upstream of Tlr4 signalling and uncover a function for FBXW7α as an attenuator of inflammatory signalling.


CCAAT-Enhancer-Binding Protein-delta/physiology , Down-Regulation , F-Box Proteins/physiology , Inflammation/physiopathology , Signal Transduction/physiology , Toll-Like Receptor 4/physiology , Ubiquitin-Protein Ligases/physiology , Animals , Cell Line, Tumor , F-Box Proteins/genetics , F-Box-WD Repeat-Containing Protein 7 , Glycogen Synthase Kinase 3/metabolism , Glycogen Synthase Kinase 3 beta , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Inflammation/genetics , Mice , RNA, Messenger/genetics , Ubiquitin-Protein Ligases/genetics
20.
Stem Cells ; 31(8): 1454-66, 2013 Aug.
Article En | MEDLINE | ID: mdl-23592398

Pancreatic cancer is the fourth leading cause of cancer-related mortality in the world. Pancreatic cancer can be localized, locally advanced, or metastatic. The median 1- and 5-year survival rates are 25% and 6%, respectively. Epigenetic modifications such as DNA methylation play a significant role during both normal human development and cancer progression. To investigate epigenetic regulation of genes in the tumor-initiating population of pancreatic cancer cells, which are also termed cancer stem cells (CSCs), we conducted epigenetic arrays in PANC1 and HPAC pancreatic cancer cell lines and compared the global DNA methylation status of CpG promoters in invasive cells, demonstrated to be CSCs, to their noninvasive counterparts, or non-CSCs. Our results suggested that the NF-κB pathway is one of the most activated pathways in pancreatic CSCs. In agreement with this, we determined that upon treatment with NF-κB pathway inhibitors, the stem cell-like properties of cells are significantly disrupted. Moreover, SOX9, demethylated in CSCs, is shown to play a crucial role in the invasion process. Additionally, we found a potential NF-κB binding site located in the SOX9 promoter and determined that the NF-κB subunit p65 positively regulates SOX9 expression by binding to its promoter directly. This interaction can be efficiently blocked by NF-κB inhibitors. Thus, our work establishes a link between the classic NF-κB signaling transduction pathway and the invasiveness of pancreatic CSCs, which may result in the identification of novel signals and molecules that function at an epigenetic level, and could potentially be targeted for pharmaceutical investigations and clinical trials.


NF-kappa B/metabolism , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , SOX9 Transcription Factor/genetics , SOX9 Transcription Factor/metabolism , Animals , Cell Line, Tumor , DNA Methylation , Epigenomics , Female , Gene Expression Regulation, Neoplastic , Heterografts , Humans , Mice , Mice, Inbred NOD , Mice, SCID , NF-kappa B/genetics , Neoplasm Invasiveness , Signal Transduction , Transcription Factor RelA/genetics , Transcription Factor RelA/metabolism
...