Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 18 de 18
1.
Clin Chem Lab Med ; 59(7): 1267-1278, 2021 06 25.
Article En | MEDLINE | ID: mdl-33565284

OBJECTIVES: Assessment of children's laboratory test results requires consideration of the extensive changes that occur during physiological development and result in pronounced sex- and age-specific dynamics in many biochemical analytes. Pediatric reference intervals have to account for these dynamics, but ethical and practical challenges limit the availability of appropriate pediatric reference intervals that cover children from birth to adulthood. We have therefore initiated the multi-center data-driven PEDREF project (Next-Generation Pediatric Reference Intervals) to create pediatric reference intervals using data from laboratory information systems. METHODS: We analyzed laboratory test results from 638,683 patients (217,883-982,548 samples per analyte, a median of 603,745 test results per analyte, and 10,298,067 test results in total) performed during patient care in 13 German centers. Test results from children with repeat measurements were discarded, and we estimated the distribution of physiological test results using a validated statistical approach (kosmic). RESULTS: We report continuous pediatric reference intervals and percentile charts for alanine transaminase, aspartate transaminase, lactate dehydrogenase, alkaline phosphatase, γ-glutamyl-transferase, total protein, albumin, creatinine, urea, sodium, potassium, calcium, chloride, anorganic phosphate, and magnesium. Reference intervals are provided as tables and fractional polynomial functions (i.e., mathematical equations) that can be integrated into laboratory information systems. Additionally, Z-scores and percentiles enable the normalization of test results by age and sex to facilitate their interpretation across age groups. CONCLUSIONS: The provided reference intervals and percentile charts enable precise assessment of laboratory test results in children from birth to adulthood. Our findings highlight the pronounced dynamics in many biochemical analytes in neonates, which require particular consideration in reference intervals to support clinical decision making most effectively.


Alkaline Phosphatase , gamma-Glutamyltransferase , Adult , Alanine Transaminase , Aspartate Aminotransferases , Child , Humans , Infant, Newborn , Reference Values
2.
Clin Chem Lab Med ; 58(8): 1314-1321, 2020 07 28.
Article En | MEDLINE | ID: mdl-32167924

Background Total haemoglobin (Hb) concentration in blood belongs to the most requested measurands, and the HiCN method (hemiglobincyanide) is accepted as a reference. Although the reaction principle is clearly characterised, measurement conditions and settings are not consistently defined, some of them influencing the results. An improvement of standardisation is the object. Methods After method optimization, measurement results between different calibration laboratories (CL) were compared with each other and also with results of the National Metrology Institute of Germany (PTB), with target values of certified reference material, within the RELA scheme, and to >1500 results from routine laboratories. Results Overall deviations between three CLs were ≤0.5% (n = 24 samples) in a measurement range of 20 g/L to 300 g/L. A CV of 0.4% was determined in pooled blood (1 year long-term imprecision, 99.0%-101.1% recovery of the mean). For selected measurements (n = 4 samples) the PTB participated without significant differences to three CLs, and no significant differences were observed comparing CLs to certified values of reference materials. The expanded measurement uncertainty (probability 95%) was estimated as 1.1%. Conclusions A reference measuring system, comprising measuring instruments and other devices, including reagents and supply, to generate reference measurement values for total Hb concentration of high accuracy and low measurement uncertainty is presented. Measurement parameters are investigated and defined. The reference measuring system is ready to offer service to EQA providers and to the IVD industry for certifying control materials or calibrators.


Hemoglobins/analysis , Hemoglobins/standards , Humans , Laboratories , Reference Values
3.
Clin Chem Lab Med ; 57(10): 1595-1607, 2019 Sep 25.
Article En | MEDLINE | ID: mdl-31005947

Background Interpreting hematology analytes in children is challenging due to the extensive changes in hematopoiesis that accompany physiological development and lead to pronounced sex- and age-specific dynamics. Continuous percentile charts from birth to adulthood allow accurate consideration of these dynamics. However, the ethical and practical challenges unique to pediatric reference intervals have restricted the creation of such percentile charts, and limitations in current approaches to laboratory test result displays restrict their use when guiding clinical decisions. Methods We employed an improved data-driven approach to create percentile charts from laboratory data collected during patient care in 10 German centers (9,576,910 samples from 358,292 patients, 412,905-1,278,987 samples per analyte). We demonstrate visualization of hematology test results using percentile charts and z-scores (www.pedref.org/hematology) and assess the potential of percentiles and z-scores to support diagnosis of different hematological diseases. Results We created percentile charts for hemoglobin, hematocrit, red cell indices, red cell count, red cell distribution width, white cell count and platelet count in girls and boys from birth to 18 years of age. Comparison of pediatricians evaluating complex clinical scenarios using percentile charts versus conventional/tabular representations shows that percentile charts can enhance physician assessment in selected example cases. Age-specific percentiles and z-scores, compared with absolute test results, improve the identification of children with blood count abnormalities and the discrimination between different hematological diseases. Conclusions The provided reference intervals enable precise assessment of pediatric hematology test results. Representation of test results using percentiles and z-scores facilitates their interpretation and demonstrates the potential of digital approaches to improve clinical decision-making.


Hematocrit/methods , Hematology/methods , Hematology/standards , Adolescent , Adult , Child , Child, Preschool , Erythrocyte Count , Erythrocyte Indices , Female , Hematocrit/standards , Hemoglobins/analysis , Humans , Infant , Infant, Newborn , Leukocyte Count , Male , Platelet Count , Reference Values , Young Adult
4.
Clin Chem ; 64(8): 1193-1202, 2018 08.
Article En | MEDLINE | ID: mdl-29903873

BACKGROUND: Measurement standardization of the catalytic concentration of α-amylase in serum is based on 3 pillars: the primary reference measurement procedure (PRMP), reference laboratories, and suitable certified reference materials (CRMs). Commutability is a prerequisite when using a CRM for calibration and trueness control of routine methods or for value transfer from the PRMP to end-user calibrators of routine methods through a calibration hierarchy. METHODS: We performed a commutability study with 30 serum pools and 5 candidate reference materials (RMs) for pancreatic α-amylase using an automated version of the PRMP and 5 different routine methods. Four candidate RMs had an artificial matrix, each with a different composition, and 1 candidate RM was based on human serum. Data were analyzed according to a linear regression analysis with prediction interval as described in the Clinical and Laboratory Standards Institute guideline EP30-A and a difference in bias analysis as described in the recommendations of the IFCC Working Group on Commutability. RESULTS: The commutability profile of the 4 candidate RMs with an artificial matrix was variable. Only 1 candidate RM, with human serum albumin in the matrix, showed a good profile like that of the candidate RM based on serum. The comparison of both commutability assessment approaches indicated some differences because of inconclusive results for the difference in bias approach, suggesting a large uncertainty on the commutability assessment. CONCLUSIONS: A CRM for pancreatic amylase in an artificial matrix can be commutable for routine methods using the same substrate as the PRMP, but the matrix composition is crucial.


Pancreatic alpha-Amylases/blood , Pancreatic alpha-Amylases/standards , Humans , Reference Standards
5.
Clin Chim Acta ; 481: 115-120, 2018 Jun.
Article En | MEDLINE | ID: mdl-29501693

BACKGROUND: For the determination of total bilirubin in serum the candidate reference method developed by Doumas et al. has international recognition. The primary standard SRM 916a (NIST) was recommended for use as the primary reference material for calibration. Nowadays, no primary standard is anymore commercially available. Further, a description of uncertainty components was missing. METHODS: Two reference laboratories have re-investigated the candidate reference measurement procedure. Beside minor modifications, mainly the use of a molar absorption coefficient instead of calibration by use of bilirubin standard solutions has facilitated the operating, and improved the analytical performance. All relevant sources of measurement uncertainty were investigated. RESULTS: A measurement range of 5-525 µmol/L and a CV of 0.5% to 1.4% (long term imprecision) were determined. Excellent agreement was obtained comparing to Doumas procedure (r = 0.9999) and during a two laboratory comparison participating at IFCC RELA ring trials (mean deviation: 0.6%). The combined expanded measurement uncertainty (probability 95%) for bilirubin concentrations >30 µmol/L was estimated as 2.2%. CONCLUSION: A reference system for total bilirubin based on the described reference procedure shall enable metrological traceability and optimized standardization of the values obtained in clinical routine laboratories.


Bilirubin/blood , Bilirubin/standards , Clinical Laboratory Techniques , Uncertainty , Clinical Laboratory Techniques/standards , Humans , Reference Standards
7.
Clin Chem Lab Med ; 49(9): 1439-46, 2011 Sep.
Article En | MEDLINE | ID: mdl-21702699

Abstract This paper is the ninth in a series dealing with reference procedures for the measurement of catalytic activity concentrations of enzymes at 37 °C and the certification of reference preparations. Other parts deal with: Part 1. The concept of reference procedures for the measurement of catalytic activity concentrations of enzymes; Part 2. Reference procedure for the measurement of catalytic concentration of creatine kinase; Part 3. Reference procedure for the measurement of catalytic concentration of lactate dehydrogenase; Part 4. Reference procedure for the measurement of catalytic concentration of alanine aminotransferase; Part 5. Reference procedure for the measurement of catalytic concentration of aspartate aminotransferase; Part 6. Reference procedure for the measurement of catalytic concentration of γ-glutamyltransferase; Part 7. Certification of four reference materials for the determination of enzymatic activity of γ-glutamyltransferase, lactate dehydrogenase, alanine aminotransferase and creatine kinase at 37 °C; Part 8. Reference procedure for the measurement of catalytic concentration of α-amylase. The procedure described here is derived from the previously described 30 °C IFCC reference method. Differences are tabulated and commented on in Appendix 1.


Alkaline Phosphatase/metabolism , Enzyme Assays/standards , Enzymes , International Agencies/standards , Temperature , Adolescent , Adult , Calibration , Female , Humans , Hydrogen-Ion Concentration , Male , Middle Aged , Reference Standards , Research Design , Solutions , Young Adult
8.
Clin Chem Lab Med ; 48(6): 795-803, 2010 Jun.
Article En | MEDLINE | ID: mdl-20441466

BACKGROUND: A new reference material for the liver enzyme aspartate transaminase (AST) (L-aspartate: 2-oxoglutarate-aminotransferase, EC 2.6.1.1), also called aspartate aminotransferase (ASAT), has been developed under the code ERM-AD457/IFCC. This certified reference material (CRM) for AST has been produced from a human type recombinant AST expressed in Escherichia coli and a buffer containing bovine serum albumin, and has been lyophilised. METHODS: The homogeneity and the stability of the material have been tested and the catalytic activity concentration has been characterised by 12 laboratories using the reference procedure for AST at 37 degrees C from the International Federation of Clinical Chemistry and Laboratory Medicine (IFCC). RESULTS: The certified catalytic activity concentration and certified uncertainty of AST in the reconstituted material are (1.74+/-0.05) microkat/L or (104.6+/-2.7) U/L (with a coverage factor k=2; 95% confidence interval). CONCLUSIONS: Both the certified value and uncertainty are traceable to the International System of Units (SI). The material is aiming to control the IFCC reference procedure for AST at 37 degrees C, which will then be used to assign values to calibrants and control materials. The present paper highlights the scientific challenges and innovations which were encountered during the development of this new CRM.


Aspartate Aminotransferases/standards , Clinical Enzyme Tests/standards , Animals , Aspartate Aminotransferases/analysis , Aspartate Aminotransferases/genetics , Cattle , Clinical Enzyme Tests/methods , Humans , Recombinant Proteins/analysis , Recombinant Proteins/genetics , Recombinant Proteins/standards , Reference Standards , Serum Albumin, Bovine/chemistry , Uncertainty
9.
Clin Chem Lab Med ; 48(5): 615-21, 2010 May.
Article En | MEDLINE | ID: mdl-20298135

The primary reference measurement procedures (PRMPs) for the international standardization of catalytic concentration measurements of alpha-amylase, alanine aminotransferase, aspartate aminotransferase (AST), creatine kinase (CK), gamma-glutamyltransferase and lactate dehydrogenase have been performed in reference laboratories for several years. The IFCC Committee on Reference Systems for Enzymes and two reference laboratories, with official accreditation for the PRMPs, have collected useful information on some of the steps of the reference procedures that require special attention. This document comprises errata corrige for minor mistakes in published PRMPs for AST and CK. Several notes on the PRMPs are emphasized. This includes details that are very important for improved standardization, and general suggestions for reducing measurement uncertainty.


Clinical Enzyme Tests/standards , Enzymes/standards , Accreditation , Alanine Transaminase/analysis , Aspartate Aminotransferases/analysis , Biocatalysis , Clinical Enzyme Tests/methods , Creatine Kinase/analysis , Enzymes/analysis , Humans , L-Lactate Dehydrogenase/analysis , L-Lactate Dehydrogenase/metabolism , Laboratories , alpha-Amylases/analysis , gamma-Glutamyltransferase/analysis
10.
Acta bioquím. clín. latinoam ; 43(3): 397-408, jul.-sep. 2009. tab
Article Es | LILACS | ID: lil-633087

Este trabajo es el octavo de una serie dedicada a los procedimientos de referencia para la medición de las concentraciones de actividad catalítica de las enzimas a 37 ºC y a la certificación de las preparaciones de referencia. Otras partes se refieren a: Parte 1. El concepto de los procedimientos de referencia para la medición de las concentraciones de la actividad catalítica de las enzimas; Parte 2. Procedimiento de referencia para la medición de la concentración catalítica de creatina quinasa; Parte 3: Procedimiento de referencia para la medición de la concentración catalítica de lactato deshidrogenasa; Parte 4. Procedimiento de referencia para la medición de la concentración catalítica de alanin aminotransferasa; Parte 5. Procedimiento de referencia para la medición de la concentración catalítica de aspartato aminotransferasa; Parte 6. Procedimiento de referencia para la medición de la concentración catalítica de gamma-glutamiltransferasa; Parte 7. Certificación de cuatro materiales de referencia para la determinación de la actividad enzimática de gamma-glutamiltransferasa, lactato deshidrogenasa, alanin aminotransferasa y creatina quinasa a 37 ºC. El procedimiento que se describe aquí se deduce a partir del método de referencia de la IFCC a 30 ºC descrito previamente. Las diferencias se tabulan y comentan en Clin Chem Lab Med 2006; 44: 1146-55.

11.
Clin Chem Lab Med ; 44(9): 1146-55, 2006.
Article En | MEDLINE | ID: mdl-16958612

This paper is the eighth in a series dealing with reference procedures for the measurement of catalytic activity concentrations of enzymes at 37 degrees C and the certification of reference preparations. Other parts deal with: Part 1. The concept of reference procedures for the measurement of catalytic activity concentrations of enzymes; Part 2. Reference procedure for the measurement of catalytic concentration of creatine kinase; Part 3. Reference procedure for the measurement of catalytic concentration of lactate dehydrogenase; Part 4. Reference procedure for the measurement of catalytic concentration of alanine aminotransferase Part 5. Reference procedure for the measurement of catalytic concentration of aspartate aminotransferase Part 6. Reference procedure for the measurement of catalytic concentration of gamma-glutamyltransferase; Part 7. Certification of four reference materials for the determination of enzymatic activity of gamma-glutamyltransferase, lactate dehydrogenase, alanine aminotransferase and creatine kinase at 37 degrees C. The procedure described here is deduced from the previously described 30 degrees C IFCC reference method. Differences are tabulated and commented on.


Alanine Transaminase/analysis , Clinical Enzyme Tests/methods , Creatine Kinase/analysis , L-Lactate Dehydrogenase/analysis , gamma-Glutamyltransferase/analysis , Alanine Transaminase/metabolism , Catalysis , Clinical Enzyme Tests/standards , Creatine Kinase/metabolism , Enzyme Stability , Glycoside Hydrolase Inhibitors , Hydrogen-Ion Concentration , Kinetics , L-Lactate Dehydrogenase/metabolism , Reference Values , Temperature , alpha-Glucosidases/blood , gamma-Glutamyltransferase/metabolism
12.
Clin Chim Acta ; 327(1-2): 69-79, 2003 Jan.
Article En | MEDLINE | ID: mdl-12482620

Consensus among clinical chemists has dictated a change in reference temperature for enzyme catalytic concentrations from 30 to 37 degrees C. Consequently, International Federation of Clinical Chemistry (IFCC) reference procedures have been redefined at the latter temperature. Acceptance in practice of these new procedures requires well-established reference values and clinical decision limits, but the establishment of reference values is complex. Therefore, as a provisional approach and to facilitate early application of the new IFCC procedures, we report our experience gained with them in the transfer of values from the consensus methods used hitherto in Germany to the new procedures. The preliminary upper reference limits were determined for catalytic activity concentrations of the enzymes alanine aminotransferase (ALT), aspartate aminotransferase (AST), creatine kinase (CK), gamma-glutamyltransferase (gamma-GT) and lactate dehydrogenase (LDH) in human sera. Since enzyme measurements are almost always made on sera from non-ambulant subjects, we have used hospital patients aged 17 years and older as the subjects of our study. The catalytic activity concentrations obtained by measurements with the German consensus methods for the respective enzyme were chosen in combination with additional enzymes of similar diagnostic relevance to classify patients' samples as part of the respective reference collective. Measurements for the determination of the upper reference limits were performed manually by use of the primary reference procedures at the measurement temperature 37 degrees C according to IFCC, and also by employing mechanized measurements adapted to the reference procedures. The upper reference limits were calculated as the 97.5th percentile of the reference collectives and determined separately for women and men: ALT: 34 U/l (female) and 45 U/l (male); AST: 31 U/l (female) and 35 U/l (male); CK: 145 U/l (female) and 171 U/l (male); gamma-GT: 38 U/l (female) and 55 U/l (male); LDH: 247 U/l (female) and 248 U/l (male).


Enzymes/standards , Adolescent , Adult , Aged , Aged, 80 and over , Alanine Transaminase/blood , Alanine Transaminase/metabolism , Alanine Transaminase/standards , Aspartate Aminotransferases/blood , Aspartate Aminotransferases/metabolism , Aspartate Aminotransferases/standards , Creatine Kinase/blood , Creatine Kinase/metabolism , Creatine Kinase/standards , Enzymes/blood , Enzymes/metabolism , Humans , L-Lactate Dehydrogenase/blood , L-Lactate Dehydrogenase/metabolism , L-Lactate Dehydrogenase/standards , Middle Aged , Practice Guidelines as Topic , Quality Control , Reference Standards , Reference Values , Sex Factors , Temperature , gamma-Glutamyltransferase/blood , gamma-Glutamyltransferase/metabolism , gamma-Glutamyltransferase/standards
13.
Clin Chem Lab Med ; 40(6): 631-4, 2002 Jun.
Article En | MEDLINE | ID: mdl-12211661

This paper is the first in a series dealing with reference procedures for the measurement of catalytic activity concentrations of enzymes at 37 degrees C and with the certification of reference preparations. Other parts deal with: Part 2. Reference Procedure for the Measurement of Catalytic Concentration of Creatine Kinase; Part 3. Reference Procedure for the Measurement of Catalytic Concentration of Lactate Dehydrogenase; Part 4. Reference Procedure for the Measurement of Catalytic Concentration of Alanine Aminotransferase; Part 5. Reference Procedure for the Measurement of Catalytic Concentration of Aspartate Aminotransferase; Part 6. Reference Procedure for the Measurement of Catalytic fication of Four Reference Materials for the Determination of Enzymatic Activity of y-Glutamyltransferase, Lactate Dehydrogenase, Alanine Aminotransferase and Creatine Kinase at 37 degrees C. A document describing the determination of preliminary reference values is also in preparation.


Enzymes/metabolism , Catalysis , Chemistry, Clinical/standards , Humans , Hydrogen-Ion Concentration , Kinetics , Quality Assurance, Health Care , Reference Standards , Reproducibility of Results , Temperature , Thermodynamics
14.
Clin Chem Lab Med ; 40(6): 643-8, 2002 Jun.
Article En | MEDLINE | ID: mdl-12211663

This paper is the third in a series dealing with reference procedures for the measurement of catalytic activity concentrations of enzymes at 37 degrees C and the certification of reference preparations. Other parts deal with: Part 1. The Concept of Reference Procedures for the Measurement of Catalytic Activity Concentrations of Enzymes; Part 2. Reference Procedure for the Measurement of Catalytic Concentration of Creatine Kinase; Part 4. Reference Procedure for the Measurement of Catalytic Concentration of Alanine Aminotransferase; Part 5. Reference Procedure for the Measurement of Catalytic Concentration of Aspartate Aminotransferase; Part 6. Reference Procedure for the Measurement of Catalytic Concentration of gamma-Glutamyltransferase; Part 7. Certification of Four Reference Materials tamyltransferase, Lactate Dehydrogenase, Alanine Aminotransferase and Creatine Kinase at 37 degrees C. A document describing the determination of preliminary upper reference limits is also in preparation. The procedure described here is deduced from the previously described 30 degrees C IFCC reference method (1). Differences are tabulated and commented on in Appendix 1.


Body Temperature , Enzymes/metabolism , Chemistry, Clinical/standards , Humans , Hydrogen-Ion Concentration , Kinetics , Quality Control , Reference Standards , Thermodynamics
15.
Clin Chem Lab Med ; 40(7): 718-24, 2002 Jul.
Article En | MEDLINE | ID: mdl-12241021

This paper is the fourth in a series dealing with reference procedures for the measurement of catalytic activity concentrations of enzymes at 37 degrees C and the certification of reference preparations. Other parts deal with: Part 1. The Concept of Reference Procedures for the Measurement of Catalytic Activity Concentrations of Enzymes; Part 2. Reference Procedure for the Measurement of Catalytic Concentration of Creatine Kinase; Part 3. Reference Procedure for the Measurement of Catalytic Concentration of Lactate Dehydrogenase; Part 5. Reference Procedure for the Measurement of Catalytic Concentration of Aspartate Aminotransferase; Part 6. Reference Procedure for the Measurement of Catalytic Concentration of Gamma-Glutamyltransferase; Part 7. Certification of Four Reference Materials for the Determination of Enzymatic Activity of Gamma-Glutamyltransferase, Lactate Dehydrogenase, Alanine Aminotransferase and Creatine Kinase at 37 degrees C. A document describing the determination of preliminary upper reference limits is also in preparation. The procedure described here is deduced from the previously described 30 degrees C IFCC reference method. Differences are tabulated and commented on in Appendix 2.


Alanine Transaminase/analysis , Alanine Transaminase/standards , Catalysis , Clinical Enzyme Tests/methods , Clinical Enzyme Tests/standards , Humans , Hydrogen-Ion Concentration , Kinetics , Reference Values , Solutions
16.
Clin Chem Lab Med ; 40(7): 725-33, 2002 Jul.
Article En | MEDLINE | ID: mdl-12241022

This paper is the fifth in a series dealing with reference procedures for the measurement of catalytic activity concentrations of enzymes at 37 degrees C and the certification of reference preparations. Other parts deal with: Part 1. The Concept of Reference Procedures for the Measurement of Catalytic Activity Concentrations of Enzymes; Part 2. Reference Procedure for the Measurement of Catalytic Concentration of Creatine Kinase; Part 3. Reference Procedure for the Measurement of Catalytic Concentration of Lactate Dehydrogenase; Part 4. Reference Procedure for the Measurement of Catalytic Concentration of Alanine Aminotransferase; Part 6. Reference Procedure for the Measurement of Catalytic Concentration of Gamma-Glutamyltransferase; Part 7. Certification of Four Reference Materials for the Determination of Enzymatic Activity of Gamma-Glutamyltransferase, Lactate Dehydrogenase, Alanine Aminotransferase and Creatine Kinase at 37 degrees C. A document describing the determination of preliminary upper reference limits is also in preparation. The procedure described here is deduced from the previously described 30 degrees C IFCC reference method. Differences are tabulated and commented on in Appendix 3.


Aspartate Aminotransferases/analysis , Aspartate Aminotransferases/standards , Catalysis , Clinical Enzyme Tests/methods , Clinical Enzyme Tests/standards , Humans , Hydrogen-Ion Concentration , Indicators and Reagents , Kinetics , Reference Values , Solutions
17.
Clin Chem Lab Med ; 40(7): 734-8, 2002 Jul.
Article En | MEDLINE | ID: mdl-12241023

This paper is the sixth in a series dealing with reference procedures for the measurement of catalytic activity concentrations of enzymes at 37 degrees C and the certification of reference preparations. Other parts deal with: Part 1. The Concept of Reference Procedures for the Measurement of Catalytic Activity Concentrations of Enzymes; Part 2. Reference Procedure for the Measurement of Catalytic Concentration of Creatine Kinase; Part 3. Reference Procedure for the Measurement of Catalytic Concentration of Lactate Dehydrogenase; Part 4. Reference Procedure for the Measurement of Catalytic Concentration of Alanine Aminotransferase; Part 5. Reference Procedure for the Measurement of Catalytic Concentration of Aspartate Aminotransferase; Part 7. Certification of Four Reference Materials for the Determination of Enzymatic Activity of Gamma-Glutamyltransferase, Lactate Dehydrogenase, Alanine Aminotransferase and Creatine Kinase at 37 degrees C A document describing the determination of preliminary upper reference limits is also in preparation. The procedure described here is deduced from the previously described 30 degrees C IFCC reference method. Differences are tabulated and commented on in Appendix 1.


gamma-Glutamyltransferase/analysis , Catalysis , Clinical Enzyme Tests/methods , Clinical Enzyme Tests/standards , Humans , Hydrogen-Ion Concentration , Indicators and Reagents , Kinetics , Reference Values , Solutions , gamma-Glutamyltransferase/standards
18.
Clin Chem Lab Med ; 40(7): 739-45, 2002 Jul.
Article En | MEDLINE | ID: mdl-12241024

This paper is the seventh in a series dealing with reference procedures for the measurement of catalytic activity concentrations of enzymes at 37 degrees C and the certification of reference preparations. Other parts deal with: Part 1. The Concept of Reference Procedures for the Measurement of Catalytic Activity Concentrations of Enzymes; Part 2. Reference Procedure for the Measurement of Catalytic Concentration of Creatine Kinase; Part 3. Reference Procedure for the Measurement of Catalytic Concentration of Lactate Dehydrogenase; Part 4. Reference Procedure for the Measurement of Catalytic Concentration of Alanine Aminotransferase; Part 5. Reference Procedure for the Measurement of Catalytic Concentration of Aspartate Aminotransferase; Part 6. Reference Procedure for the Measurement of Catalytic Concentration of Gamma-Glutamyltransferase. A document describing the determination of preliminary reference values is also in preparation. The certification of the catalytic activity concentrations as determined by the recently elaborated IFCC primary reference methods at 37 degrees C of four enzyme preparations, namely IRMM/IFCC 452 (gamma-glutamyltransferase), IRMM/IFCC 453 (lactate dehydrogenase 1), IRMM/IFCC 454 (alanine aminotransferase) and IRMM/IFCC 455 (creatine kinase) is described. Homogeneity data were derived from previous results. Stability was assessed using recently obtained data as well as data from previous stability studies. The collaborative study for value assignment was performed under a strict quality control scheme to ensure traceability to the primary reference method. Uncertainty of the materials was assessed in compliance with the Guide to the Expression of Uncertainty in Measurement. The certified values obtained at 37 degrees C are 1.90 microkat/l +/- 0.04 microkat/l (114.1 U/l +/- 2.4 U/l), for gamma-glutamyltransferase, 8.37 microkat/l +/- 0.12 microkat/l (502 U/l +/- 7 U/l), for lactate dehydrogenase 1, 3.09 microkat/l +/- 0.07 microkat/l (186 U/l +/- 4 U/l), for alanine aminotransferase and 1.68 microkat/l +/- 0.07 microkat/l (101 U/l +/- 4 U/l), for creatine kinase. The materials are intended for internal quality control as well as for the evaluation of test systems as required by recent European Union legislation. Furthermore, the materials can be used to transfer accuracy from a reference method to a routine procedure provided the procedures exhibit the same analytical specificity and the certified materials are commutable.


Enzymes/standards , Guidelines as Topic , Alanine Transaminase/analysis , Alanine Transaminase/standards , Clinical Enzyme Tests/methods , Clinical Enzyme Tests/standards , Creatine Kinase/analysis , Creatine Kinase/standards , Enzymes/analysis , Humans , L-Lactate Dehydrogenase/analysis , L-Lactate Dehydrogenase/standards , Quality Control , Reference Standards , Reproducibility of Results , gamma-Glutamyltransferase/analysis , gamma-Glutamyltransferase/standards
...