Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
RNA Biol ; 18(sup1): 61-74, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34775914

RESUMEN

Ribosomes are essential nanomachines responsible for all protein production in cells. Ribosome biogenesis and function are energy costly processes, they are tightly regulated to match cellular needs. In cancer, major pathways that control ribosome biogenesis and function are often deregulated to ensure cell survival and to accommodate the continuous proliferation of tumour cells. Ribosomal RNAs (rRNAs) are abundantly modified with 2'-O-methylation (Nm, ribomethylation) being one of the most common modifications. In eukaryotic ribosomes, ribomethylation is performed by the methyltransferase Fibrillarin guided by box C/D small nucleolar RNAs (snoRNAs). Accumulating evidences indicate that snoRNA expression and ribosome methylation profiles are altered in cancer. Here we review our current knowledge on differential snoRNA expression and rRNA 2'-O methylation in the context of human malignancies, and discuss the consequences and opportunities for cancer diagnostics, prognostics, and therapeutics.


Asunto(s)
Neoplasias/patología , Procesamiento Postranscripcional del ARN , ARN Ribosómico/química , ARN Ribosómico/genética , ARN Nucleolar Pequeño/genética , Ribosomas/metabolismo , Animales , Humanos , Metilación , Neoplasias/genética , Ribosomas/genética
2.
Front Bioeng Biotechnol ; 9: 663357, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33937219

RESUMEN

The importance of extracellular matrix (ECM) proteins in mediating bone fracture repair is evident, and fibronectin (FN) has emerged as a pivotal regulator of this process. FN is an evolutionarily conserved glycoprotein found in all tissues of the body, and functions in several stages of fracture healing. FN acts as a three-dimensional scaffold immediately following trauma, guiding the assembly of additional ECM components. Furthermore, FN regulates cellular behavior via integrin-binding and growth factor-binding domains, promoting downstream responses including cell recruitment, proliferation and differentiation. Due to its diverse functions, the development of FN-based strategies to promote fracture healing is under intense research. In this review, we discuss the recent advancements in utilizing FN-based biomaterials, showing promise in tissue engineering and regenerative medicine applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA