Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 61
1.
Folia Biol (Praha) ; 70(1): 62-73, 2024.
Article En | MEDLINE | ID: mdl-38830124

Germline DNA testing using the next-gene-ration sequencing (NGS) technology has become the analytical standard for the diagnostics of hereditary diseases, including cancer. Its increasing use places high demands on correct sample identification, independent confirmation of prioritized variants, and their functional and clinical interpretation. To streamline these processes, we introduced parallel DNA and RNA capture-based NGS using identical capture panel CZECANCA, which is routinely used for DNA analysis of hereditary cancer predisposition. Here, we present the analytical workflow for RNA sample processing and its analytical and diagnostic performance. Parallel DNA/RNA analysis allowed credible sample identification by calculating the kinship coefficient. The RNA capture-based approach enriched transcriptional targets for the majority of clinically relevant cancer predisposition genes to a degree that allowed analysis of the effect of identified DNA variants on mRNA processing. By comparing the panel and whole-exome RNA enrichment, we demonstrated that the tissue-specific gene expression pattern is independent of the capture panel. Moreover, technical replicates confirmed high reproducibility of the tested RNA analysis. We concluded that parallel DNA/RNA NGS using the identical gene panel is a robust and cost-effective diagnostic strategy. In our setting, it allows routine analysis of 48 DNA/RNA pairs using NextSeq 500/550 Mid Output Kit v2.5 (150 cycles) in a single run with sufficient coverage to analyse 226 cancer predisposition and candidate ge-nes. This approach can replace laborious Sanger confirmatory sequencing, increase testing turnaround, reduce analysis costs, and improve interpretation of the impact of variants by analysing their effect on mRNA processing.


Genetic Predisposition to Disease , High-Throughput Nucleotide Sequencing , Humans , High-Throughput Nucleotide Sequencing/methods , Neoplasms/genetics , Neoplasms/diagnosis , RNA/genetics , Reproducibility of Results , Sequence Analysis, DNA/methods , Sequence Analysis, RNA/methods , DNA/genetics
2.
Nucleic Acids Res ; 2024 Jun 13.
Article En | MEDLINE | ID: mdl-38884202

RAD18 is an E3 ubiquitin ligase that prevents replication fork collapse by promoting DNA translesion synthesis and template switching. Besides this classical role, RAD18 has been implicated in homologous recombination; however, this function is incompletely understood. Here, we show that RAD18 is recruited to DNA lesions by monoubiquitination of histone H2A at K15 and counteracts accumulation of 53BP1. Super-resolution microscopy revealed that RAD18 localizes to the proximity of DNA double strand breaks and limits the distribution of 53BP1 to the peripheral chromatin nanodomains. Whereas auto-ubiquitination of RAD18 mediated by RAD6 inhibits its recruitment to DNA breaks, interaction with SLF1 promotes RAD18 accumulation at DNA breaks in the post-replicative chromatin by recognition of histone H4K20me0. Surprisingly, suppression of 53BP1 function by RAD18 is not involved in homologous recombination and rather leads to reduction of non-homologous end joining. Instead, we provide evidence that RAD18 promotes HR repair by recruiting the SMC5/6 complex to DNA breaks. Finally, we identified several new loss-of-function mutations in RAD18 in cancer patients suggesting that RAD18 could be involved in cancer development.

3.
Cancer ; 2024 May 08.
Article En | MEDLINE | ID: mdl-38718029

BACKGROUND: The polygenic risk score (PRS) allows the quantification of the polygenic effect of many low-penetrance alleles on the risk of breast cancer (BC). This study aimed to evaluate the performance of two sets comprising 77 or 313 low-penetrance loci (PRS77 and PRS313) in patients with BC in the Czech population. METHODS: In a retrospective case-control study, variants were genotyped from both the PRS77 and PRS313 sets in 1329 patients with BC and 1324 noncancer controls, all women without germline pathogenic variants in BC predisposition genes. Odds ratios (ORs) were calculated according to the categorical PRS in individual deciles. Weighted Cox regression analysis was used to estimate the hazard ratio (HR) per standard deviation (SD) increase in PRS. RESULTS: The distributions of standardized PRSs in patients and controls were significantly different (p < 2.2 × 10-16) with both sets. PRS313 outperformed PRS77 in categorical and continuous PRS analyses. For patients in the highest 2.5% of PRS313, the risk reached an OR of 3.05 (95% CI, 1.66-5.89; p = 1.76 × 10-4). The continuous risk was estimated as an HRper SD of 1.64 (95% CI, 1.49-1.81; p < 2.0 × 10-16), which resulted in an absolute risk of 21.03% at age 80 years for individuals in the 95th percentile of PRS313. Discordant categorization into PRS deciles was observed in 248 individuals (9.3%). CONCLUSIONS: Both PRS77 and PRS313 are able to stratify individuals according to their BC risk in the Czech population. PRS313 shows better discriminatory ability. The results support the potential clinical utility of using PRS313 in individualized BC risk prediction.

4.
Cancer Biomark ; 2024 Mar 28.
Article En | MEDLINE | ID: mdl-38607753

BACKGROUND: Ovarian cancer (OC) is mostly diagnosed in advanced stages with high incidence-to-mortality rate. Nevertheless, some patients achieve long-term disease-free survival. However, the prognostic markers have not been well established. OBJECTIVE: The primary objective of this study was to analyse the association of the suggested prognostic marker rs2185379 in PRDM1 with long-term survival in a large independent cohort of advanced OC patients. METHODS: We genotyped 545 well-characterized advanced OC patients. All patients were tested for OC predisposition. The effect of PRDM1 rs2185379 and other monitored clinicopathological and genetic variables on survival were analysed. RESULTS: The univariate analysis revealed no significant effect of PRDM1 rs2185379 on survival whereas significantly worse prognosis was observed in postmenopausal patients (HR = 2.49; 95%CI 1.90-3.26; p= 4.14 × 10 - 11) with mortality linearly increasing with age (HR = 1.05 per year; 95%CI 1.04-1.07; p= 2 × 10 - 6), in patients diagnosed with non-high-grade serous OC (HR = 0.44; 95%CI 0.32-0.60; p= 1.95 × 10 - 7) and in patients carrying a gBRCA1 pathogenic variant (HR = 0.65; 95%CI 0.48-0.87; p= 4.53 × 10 - 3). The multivariate analysis interrogating the effect of PRDM1 rs2185379 with other significant prognostic factors revealed marginal association of PRDM1 rs2185379 with worse survival in postmenopausal women (HR = 1.54; 95%CI 1.01-2.38; p= 0.046). CONCLUSIONS: Unlike age at diagnosis, OC histology or gBRCA1 status, rs2185379 in PRDM1 is unlikely a marker of long-term survival in patients with advance OC.

5.
Breast ; 75: 103721, 2024 Jun.
Article En | MEDLINE | ID: mdl-38554551

Germline CHEK2 pathogenic variants confer an increased risk of female breast cancer (FBC). Here we describe a recurrent germline intronic variant c.1009-118_1009-87delinsC, which showed a splice acceptor shift in RNA analysis, introducing a premature stop codon (p.Tyr337PhefsTer37). The variant was found in 21/10,204 (0.21%) Czech FBC patients compared to 1/3250 (0.03%) controls (p = 0.04) and in 4/3639 (0.11%) FBC patients from an independent German dataset. In addition, we found this variant in 5/2966 (0.17%) Czech (but none of the 443 German) ovarian cancer patients, three of whom developed early-onset tumors. Based on these observations, we classified this variant as likely pathogenic.


Breast Neoplasms , Checkpoint Kinase 2 , Genetic Predisposition to Disease , Germ-Line Mutation , Introns , RNA Splicing , Humans , Female , Checkpoint Kinase 2/genetics , Breast Neoplasms/genetics , Genetic Predisposition to Disease/genetics , Introns/genetics , RNA Splicing/genetics , Czech Republic , Adult , Middle Aged , RNA Precursors/genetics , Germany , Ovarian Neoplasms/genetics
6.
Int J Mol Sci ; 24(23)2023 Nov 30.
Article En | MEDLINE | ID: mdl-38069345

Ovarian cancer (OC) is one of the leading causes of cancer-related deaths in women. Most patients are diagnosed with advanced epithelial OC in their late 60s, and early-onset adult OC diagnosed ≤30 years is rare, accounting for less than 5% of all OC cases. The most significant risk factor for OC development are germline pathogenic/likely pathogenic variants (GPVs) in OC predisposition genes (including BRCA1, BRCA2, BRIP1, RAD51C, RAD51D, Lynch syndrome genes, or BRIP1), which contribute to the development of over 20% of all OC cases. GPVs in BRCA1/BRCA2 are the most prevalent. The presence of a GPV directs tailored cancer risk-reducing strategies for OC patients and their relatives. Identification of OC patients with GPVs can also have therapeutic consequences. Despite the general assumption that early cancer onset indicates higher involvement of hereditary cancer predisposition, the presence of GPVs in early-onset OC is rare (<10% of patients), and their heritability is uncertain. This review summarizes the current knowledge on the genetic predisposition to early-onset OC, with a special focus on epithelial OC, and suggests other alternative genetic factors (digenic, oligogenic, polygenic heritability, genetic mosaicism, imprinting, etc.) that may influence the development of early-onset OC in adult women lacking GPVs in known OC predisposition genes.


Genetic Predisposition to Disease , Ovarian Neoplasms , Adult , Humans , Female , BRCA2 Protein/genetics , BRCA1 Protein/genetics , Genes, BRCA2 , Ovarian Neoplasms/pathology , Carcinoma, Ovarian Epithelial/genetics , Risk Factors , Germ-Line Mutation
7.
Oncol Lett ; 25(6): 216, 2023 Jun.
Article En | MEDLINE | ID: mdl-37153042

Endometrial cancer (EC) is the most common gynecological malignancy in developed countries. The present study aimed to determine the frequency of germline pathogenic variants (PV) in patients with EC. In this multicenter retrospective cohort study, germline genetic testing (GGT) was performed in 527 patients with EC using a next generation sequencing panel targeting 226 genes, including 5 Lynch syndrome (LS) and 14 hereditary breast and ovarian cancer (HBOC) predisposition genes, and 207 candidate predisposition genes. Gene-level risks were calculated using 1,662 population-matched controls (PMCs). Patients were sub-categorized to fulfill GGT criteria for LS, HBOC, both or none. A total of 60 patients (11.4%) carried PV in LS (5.1%) and HBOC (6.6%) predisposition genes, including two carriers of double PV. PV in LS genes conferred a significantly higher EC risk [odds ratio (OR), 22.4; 95% CI, 7.8-64.3; P=1.8×10-17] than the most frequently altered HBOC genes BRCA1 (OR, 3.9; 95% CI, 1.6-9.5; P=0.001), BRCA2 (OR, 7.4; 95% CI, 1.9-28.9; P=0.002) and CHEK2 (OR, 3.2; 95% CI, 1.0-9.9; P=0.04). Furthermore, >6% of patients with EC not fulfilling LS or HBOC GGT indication criteria carried a PV in a clinically relevant gene. Carriers of PV in LS genes had a significantly lower age of EC onset than non-carriers (P=0.01). Another 11.0% of patients carried PV in a candidate gene (the most frequent were FANCA and MUTYH); however, their individual frequencies did not differ from PMCs (except for aggregated frequency of loss-of-function variants in POLE/POLD1; OR, 10.44; 95% CI, 1.1-100.5; P=0.012). The present study demonstrated the importance of GGT in patients with EC. The increased risk of EC of PV carriers in HBOC genes suggests that the diagnosis of EC should be included in the HBOC GGT criteria.

8.
Int J Mol Sci ; 24(6)2023 Mar 15.
Article En | MEDLINE | ID: mdl-36982687

The MRE11, RAD50, and NBN genes encode for the nuclear MRN protein complex, which senses the DNA double strand breaks and initiates the DNA repair. The MRN complex also participates in the activation of ATM kinase, which coordinates DNA repair with the p53-dependent cell cycle checkpoint arrest. Carriers of homozygous germline pathogenic variants in the MRN complex genes or compound heterozygotes develop phenotypically distinct rare autosomal recessive syndromes characterized by chromosomal instability and neurological symptoms. Heterozygous germline alterations in the MRN complex genes have been associated with a poorly-specified predisposition to various cancer types. Somatic alterations in the MRN complex genes may represent valuable predictive and prognostic biomarkers in cancer patients. MRN complex genes have been targeted in several next-generation sequencing panels for cancer and neurological disorders, but interpretation of the identified alterations is challenging due to the complexity of MRN complex function in the DNA damage response. In this review, we outline the structural characteristics of the MRE11, RAD50 and NBN proteins, the assembly and functions of the MRN complex from the perspective of clinical interpretation of germline and somatic alterations in the MRE11, RAD50 and NBN genes.


Cell Cycle Proteins , Tumor Suppressor Proteins , Humans , Cell Cycle Proteins/metabolism , Tumor Suppressor Proteins/genetics , MRE11 Homologue Protein/genetics , MRE11 Homologue Protein/metabolism , DNA Repair Enzymes/genetics , DNA Repair Enzymes/metabolism , Ataxia Telangiectasia Mutated Proteins/genetics , Ataxia Telangiectasia Mutated Proteins/metabolism , DNA Repair/genetics , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Acid Anhydride Hydrolases/genetics , Acid Anhydride Hydrolases/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism
9.
Cancers (Basel) ; 15(1)2022 Dec 29.
Article En | MEDLINE | ID: mdl-36612198

Hepatocellular carcinoma (HCC) mainly stems from liver cirrhosis and its genetic predisposition is believed to be rare. However, two recent studies describe pathogenic/likely pathogenic germline variants (PV) in cancer-predisposition genes (CPG). As the risk of de novo tumors might be increased in PV carriers, especially in immunosuppressed patients after a liver transplantation, we analyzed the prevalence of germline CPG variants in HCC patients considered for liver transplantation. Using the panel NGS targeting 226 CPGs, we analyzed germline DNA from 334 Czech HCC patients and 1662 population-matched controls. We identified 48 PVs in 35 genes in 47/334 patients (14.1%). However, only 7/334 (2.1%) patients carried a PV in an established CPG (PMS2, 4×NBN, FH or RET). Only the PV carriers in two MRN complex genes (NBN and RAD50) were significantly more frequent among patients over controls. We found no differences in clinicopathological characteristics between carriers and non-carriers. Our study indicated that the genetic component of HCC is rare. The HCC diagnosis itself does not meet criteria for routine germline CPG genetic testing. However, a low proportion of PV carriers may benefit from a tailored follow-up or targeted therapy and germline testing could be considered in liver transplant recipients.

10.
Cancers (Basel) ; 13(17)2021 Sep 02.
Article En | MEDLINE | ID: mdl-34503238

(1) Background: The proportion and spectrum of germline pathogenic variants (PV) associated with an increased risk for pancreatic ductal adenocarcinoma (PDAC) varies among populations. (2) Methods: We analyzed 72 Belgian and 226 Czech PDAC patients by multigene panel testing. The prevalence of pathogenic variants (PV) in relation to personal/family cancer history were evaluated. PDAC risks were calculated using both gnomAD-NFE and population-matched controls. (3) Results: In 35/298 (11.7%) patients a PV in an established PDAC-predisposition gene was found. BRCA1/2 PV conferred a high risk in both populations, ATM and Lynch genes only in the Belgian subgroup. PV in other known PDAC-predisposition genes were rarer. Interestingly, a high frequency of CHEK2 PV was observed in both patient populations. PV in PDAC-predisposition genes were more frequent in patients with (i) multiple primary cancers (12/38; 32%), (ii) relatives with PDAC (15/56; 27%), (iii) relatives with breast/ovarian/colorectal cancer or melanoma (15/86; 17%) but more rare in sporadic PDAC (5/149; 3.4%). PV in homologous recombination genes were associated with improved overall survival (HR = 0.51; 95% CI 0.34-0.77). (4) Conclusions: Our analysis emphasizes the value of multigene panel testing in PDAC patients, especially in individuals with a positive family cancer history, and underlines the importance of population-matched controls for risk assessment.

12.
Klin Onkol ; 34(1): 26-32, 2021.
Article En | MEDLINE | ID: mdl-33657816

Ovarian cancer is one of the most common gynecologic cancers with the highest mortality rate over a long period. Genetic predisposition to ovarian cancer is unusually high. In the Czech Republic, causal mutation in any ovarian cancer predisposition gene is identified in approximately 30% of the ovarian cancer patients. Therefore, according to the current guidelines, all ovarian cancer patients should be provided with genetic testing. The BRCA1 and BRCA2 are the two major ovarian cancer predisposition genes. Nevertheless, mutations in other predisposition genes, including RAD51C and RAD51D, are associated with high ovarian cancer risk. Mutations in RAD51C and RAD51D are found in 1% of ovarian cancer patients in each respective gene. Currently, identification of germline mutation in RAD51C and RAD51D is primarily of preventive importance but it potentially could make a prognostic difference. The aim of this review is to summarize the recent RAD51C and RAD51D knowledge, including the biological function, cancer risks associated with germline mutations, and recommendations for mutation carriers.


DNA-Binding Proteins/genetics , Ovarian Neoplasms/genetics , Female , Genetic Predisposition to Disease , Germ-Line Mutation , Humans
13.
Cells ; 9(12)2020 12 12.
Article En | MEDLINE | ID: mdl-33322746

Germline alterations in many genes coding for proteins regulating DNA repair and DNA damage response (DDR) to DNA double-strand breaks (DDSB) have been recognized as pathogenic factors in hereditary cancer predisposition. The ATM-CHEK2-p53 axis has been documented as a backbone for DDR and hypothesized as a barrier against cancer initiation. However, although CHK2 kinase coded by the CHEK2 gene expedites the DDR signal, its function in activation of p53-dependent cell cycle arrest is dispensable. CHEK2 mutations rank among the most frequent germline alterations revealed by germline genetic testing for various hereditary cancer predispositions, but their interpretation is not trivial. From the perspective of interpretation of germline CHEK2 variants, we review the current knowledge related to the structure of the CHEK2 gene, the function of CHK2 kinase, and the clinical significance of CHEK2 germline mutations in patients with hereditary breast, prostate, kidney, thyroid, and colon cancers.


Checkpoint Kinase 2/genetics , Genetic Predisposition to Disease , Germ-Line Mutation/genetics , Neoplasms/enzymology , Neoplasms/genetics , Animals , Checkpoint Kinase 2/chemistry , Checkpoint Kinase 2/metabolism , Humans , Mutation Rate , Substrate Specificity
14.
Biomedicines ; 8(10)2020 Oct 09.
Article En | MEDLINE | ID: mdl-33050356

Cutaneous melanoma is the deadliest skin malignity with a rising prevalence worldwide. Patients carrying germline mutations in melanoma-susceptibility genes face an increased risk of melanoma and other cancers. To assess the spectrum of germline variants, we analyzed 264 Czech melanoma patients indicated for testing due to early melanoma (at <25 years) or the presence of multiple primary melanoma/melanoma and other cancer in their personal and/or family history. All patients were analyzed by panel next-generation sequencing targeting 217 genes in four groups: high-to-moderate melanoma risk genes, low melanoma risk genes, cancer syndrome genes, and other genes with an uncertain melanoma risk. Population frequencies were assessed in 1479 population-matched controls. Selected POT1 and CHEK2 variants were characterized by functional assays. Mutations in clinically relevant genes were significantly more frequent in melanoma patients than in controls (31/264; 11.7% vs. 58/1479; 3.9%; p = 2.0 × 10-6). A total of 9 patients (3.4%) carried mutations in high-to-moderate melanoma risk genes (CDKN2A, POT1, ACD) and 22 (8.3%) patients in other cancer syndrome genes (NBN, BRCA1/2, CHEK2, ATM, WRN, RB1). Mutations in high-to-moderate melanoma risk genes (OR = 52.2; 95%CI 6.6-413.1; p = 3.2 × 10-7) and in other cancer syndrome genes (OR = 2.3; 95%CI 1.4-3.8; p = 0.003) were significantly associated with melanoma risk. We found an increased potential to carry these mutations (OR = 2.9; 95%CI 1.2-6.8) in patients with double primary melanoma, melanoma and other primary cancer, but not in patients with early age at onset. The analysis revealed affected genes in Czech melanoma patients and identified individuals who may benefit from genetic testing and future surveillance management of mutation carriers.

15.
Cancers (Basel) ; 12(4)2020 Apr 13.
Article En | MEDLINE | ID: mdl-32295079

Ovarian cancer (OC) is the deadliest gynecologic malignancy with a substantial proportion of hereditary cases and a frequent association with breast cancer (BC). Genetic testing facilitates treatment and preventive strategies reducing OC mortality in mutation carriers. However, the prevalence of germline mutations varies among populations and many rarely mutated OC predisposition genes remain to be identified. We aimed to analyze 219 genes in 1333 Czech OC patients and 2278 population-matched controls using next-generation sequencing. We revealed germline mutations in 18 OC/BC predisposition genes in 32.0% of patients and in 2.5% of controls. Mutations in BRCA1/BRCA2, RAD51C/RAD51D, BARD1, and mismatch repair genes conferred high OC risk (OR > 5). Mutations in BRIP1 and NBN were associated with moderate risk (both OR = 3.5). BRCA1/2 mutations dominated in almost all clinicopathological subgroups including sporadic borderline tumors of ovary (BTO). Analysis of remaining 201 genes revealed somatic mosaics in PPM1D and germline mutations in SHPRH and NAT1 associating with a high/moderate OC risk significantly; however, further studies are warranted to delineate their contribution to OC development in other populations. Our findings demonstrate the high proportion of patients with hereditary OC in Slavic population justifying genetic testing in all patients with OC, including BTO.

16.
J Clin Oncol ; 38(7): 674-685, 2020 03 01.
Article En | MEDLINE | ID: mdl-31841383

PURPOSE: To estimate age-specific relative and absolute cancer risks of breast cancer and to estimate risks of ovarian, pancreatic, male breast, prostate, and colorectal cancers associated with germline PALB2 pathogenic variants (PVs) because these risks have not been extensively characterized. METHODS: We analyzed data from 524 families with PALB2 PVs from 21 countries. Complex segregation analysis was used to estimate relative risks (RRs; relative to country-specific population incidences) and absolute risks of cancers. The models allowed for residual familial aggregation of breast and ovarian cancer and were adjusted for the family-specific ascertainment schemes. RESULTS: We found associations between PALB2 PVs and risk of female breast cancer (RR, 7.18; 95% CI, 5.82 to 8.85; P = 6.5 × 10-76), ovarian cancer (RR, 2.91; 95% CI, 1.40 to 6.04; P = 4.1 × 10-3), pancreatic cancer (RR, 2.37; 95% CI, 1.24 to 4.50; P = 8.7 × 10-3), and male breast cancer (RR, 7.34; 95% CI, 1.28 to 42.18; P = 2.6 × 10-2). There was no evidence for increased risks of prostate or colorectal cancer. The breast cancer RRs declined with age (P for trend = 2.0 × 10-3). After adjusting for family ascertainment, breast cancer risk estimates on the basis of multiple case families were similar to the estimates from families ascertained through population-based studies (P for difference = .41). On the basis of the combined data, the estimated risks to age 80 years were 53% (95% CI, 44% to 63%) for female breast cancer, 5% (95% CI, 2% to 10%) for ovarian cancer, 2%-3% (95% CI females, 1% to 4%; 95% CI males, 2% to 5%) for pancreatic cancer, and 1% (95% CI, 0.2% to 5%) for male breast cancer. CONCLUSION: These results confirm PALB2 as a major breast cancer susceptibility gene and establish substantial associations between germline PALB2 PVs and ovarian, pancreatic, and male breast cancers. These findings will facilitate incorporation of PALB2 into risk prediction models and optimize the clinical cancer risk management of PALB2 PV carriers.


Fanconi Anemia Complementation Group N Protein/genetics , Neoplasms/genetics , Adult , Age Factors , Aged , Aged, 80 and over , Breast Neoplasms, Male/genetics , Female , Genetic Predisposition to Disease , Germ-Line Mutation , Humans , Internationality , Male , Middle Aged , Ovarian Neoplasms/genetics , Pancreatic Neoplasms/genetics , Risk
17.
Sci Rep ; 9(1): 17050, 2019 11 19.
Article En | MEDLINE | ID: mdl-31745173

The most common histological subtypes of cutaneous melanoma include superficial spreading and nodular melanoma. However, the spectrum of somatic mutations developed in those lesions and all potential druggable targets have not yet been fully elucidated. We present the results of a sequence capture NGS analysis of 114 primary nodular and superficial spreading melanomas identifying driver mutations using biostatistical, immunohistochemical and/or functional approach. The spectrum and frequency of pathogenic or likely pathogenic variants were identified across 54 evaluated genes, including 59 novel mutations, and the newly identified TP53 loss-of-function mutations p.(L194P) and p.(R280K). Frequently mutated genes most commonly affected the MAPK pathway, followed by chromatin remodeling, and cell cycle regulation. Frequent aberrations were also detected in the genes coding for proteins involved in DNA repair and the regulation and modification of cellular tight junctions. Furthermore, relatively frequent mutations were described in KDR and MET, which represent potential clinically important targets. Those results suggest that with the development of new therapeutic possibilities, not only BRAF testing, but complex molecular testing of cutaneous melanoma may become an integral part of the decision process concerning the treatment of patients with melanoma.


Genetic Predisposition to Disease/genetics , Loss of Function Mutation/genetics , Melanoma/genetics , Skin Neoplasms/genetics , Adult , Aged , Aged, 80 and over , Biomarkers, Tumor/genetics , Cell Cycle/genetics , Chromatin Assembly and Disassembly/genetics , DNA Repair/genetics , Female , Gene Frequency/genetics , High-Throughput Nucleotide Sequencing , Humans , MAP Kinase Signaling System/genetics , Male , Melanoma/pathology , Middle Aged , Proto-Oncogene Proteins B-raf/genetics , Skin Neoplasms/pathology , Tight Junctions/genetics , Tumor Suppressor Protein p53/genetics , Young Adult , Melanoma, Cutaneous Malignant
18.
Cell Death Dis ; 10(11): 818, 2019 10 28.
Article En | MEDLINE | ID: mdl-31659152

Protein phosphatase magnesium-dependent 1 delta (PPM1D) terminates cell response to genotoxic stress by negatively regulating the tumor suppressor p53 and other targets at chromatin. Mutations in the exon 6 of the PPM1D result in production of a highly stable, C-terminally truncated PPM1D. These gain-of-function PPM1D mutations are present in various human cancers but their role in tumorigenesis remains unresolved. Here we show that truncated PPM1D impairs activation of the cell cycle checkpoints in human non-transformed RPE cells and allows proliferation in the presence of DNA damage. Next, we developed a mouse model by introducing a truncating mutation in the PPM1D locus and tested contribution of the oncogenic PPM1DT allele to colon tumorigenesis. We found that p53 pathway was suppressed in colon stem cells harboring PPM1DT resulting in proliferation advantage under genotoxic stress condition. In addition, truncated PPM1D promoted tumor growth in the colon in Apcmin mice and diminished survival. Moreover, tumor organoids derived from colon of the ApcminPpm1dT/+ mice were less sensitive to 5-fluorouracil when compared to ApcminPpm1d+/+and the sensitivity to 5-fluorouracil was restored by inhibition of PPM1D. Finally, we screened colorectal cancer patients and identified recurrent somatic PPM1D mutations in a fraction of colon adenocarcinomas that are p53 proficient and show defects in mismatch DNA repair. In summary, we provide the first in vivo evidence that truncated PPM1D can promote tumor growth and modulate sensitivity to chemotherapy.


Adenomatous Polyposis Coli Protein/genetics , Colonic Neoplasms/drug therapy , Protein Phosphatase 2C/genetics , Tumor Suppressor Protein p53/genetics , Animals , Carcinogenesis/drug effects , Cell Cycle Checkpoints/genetics , Cell Proliferation/drug effects , Chromatin/drug effects , Colonic Neoplasms/genetics , Colonic Neoplasms/pathology , DNA Damage/drug effects , DNA Repair/drug effects , Exons/genetics , Fluorouracil/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , Humans , Mice , Mutation/genetics
19.
Klin Onkol ; 32(Supplementum2): 6-13, 2019.
Article En | MEDLINE | ID: mdl-31409076

An inherited predisposition to breast cancer underlies 5-10% of breast tumors. High-risk BRCA1 and BRCA2 genes result in an 85% lifetime risk of breast cancer and a 20-60% lifetime risk of ovarian cancer. Next-generation sequencing or massive parallel sequencing are now established testing methods that enable screening for many genes that predispose to heterogeneous hereditary cancer syndromes (22 genes are required by the health insurance companies). In addition to BRCA1 and BRCA2, inherited mutations in other genes predispose to breast and/or ovarian cancer. High-risk breast cancer genes include TP53, STK11, CDH1, PTEN, PALB2, and NF1, while moderate-risk (2-4 times increased risk) breast cancer genes include ATM, CHEK2, and NBN. Moderate risk is also suggested for Lynch syndrome, MUTYH, BRIP1, RAD51C, RAD51D, BARD1, FANCA, FANCC, FANCM, BLM, WRN genes. In heterozygotes for other recessive syndromes the risk of developing breast cancer is subject to current research. Low-risk genes are (mostly) irrelevant from a clinical perspective. Other genes that increase the risk of ovarian cancer include the genes for Lynch syndrome, the BRIP1, RAD51C and RAD51D genes. Preventive care should be proposed based on assumed cumulative breast cancer risk (see http: //www.mamo.cz): a risk of >20% for BRCA1/2, TP53, PTEN, STK11, CDH1, PALB2, CHEK2, ATM, and NF1; and a risk of 10-20% for BRIP1, RAD51C, RAD51B, BARD1, FANCA, FANCC, FANCM, NBN, BLM, and WRN. The genetic risk should be assessed by a geneticist and be based on inherited mutations and empirical risk according to family history. Prophylactic mastectomy is considered for high-risk gene carriers but not for moderate-risk gene carriers; however, it may be considered if there is an underlying family history, a risk of parenchyma of the mammary gland, or other risk factors. Ovarian cancer risk increases significantly in carriers of the BRIP1, RAD51C, and RAD51D genes. For prevention of ovarian cancer, prophylactic salpingo-oophorectomy is an important component of preventive care. In ovarian cancer families with no identified risk germline mutation, preventive salpingo-oophorectomy is not routinely recommended but may be considered as the only efficient method of prevention due to the increased empirical risk (4 times) of ovarian cancer in first-degree relatives. Supported by the grant project MH CZ - RVO (MMCI, 00209805), AZV 15-27695A and AZV 16-29959A. The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study. The Editorial Board declares that the manuscript met the ICMJE recommendation for biomedical papers. Submitted: 17. 5. 2019 Accepted: 31. 5. 2019.


Breast Neoplasms/genetics , Breast Neoplasms/prevention & control , Genetic Predisposition to Disease , Ovarian Neoplasms/genetics , Ovarian Neoplasms/prevention & control , Female , Humans , Prophylactic Mastectomy , Risk Factors , Salpingo-oophorectomy
20.
Klin Onkol ; 32(Supplementum2): 36-50, 2019.
Article En | MEDLINE | ID: mdl-31409080

BACKGROUND: Hereditary mutations in the CHEK2 gene (which encodes CHK2 kinase) contribute to a moderately increased risk of breast cancer (BC) and other cancers. Large variations in the frequency of CHEK2 mutations and the occurrence of variants of unknown clinical significance (VUS) complicate estimation of cancer risk in carriers of germline CHEK2 mutations. PATIENTS AND METHODS: We performed mutation analysis of 1,526 high-risk Czech BC patients and 3,360 Czech controls. Functional analysis was performed for identified VUS using a model system based on a human RPE1-CHEK2-KO cell line harboring biallelic inactivation of endogenous CHEK2. RESULTS: The frequency of ten truncating CHEK2 variants differed markedly between BC patients (2.26%) and controls (0.11%; p = 4.1 × 1012). We also found 23 different missense variants in 4.5% patients and in 4.0% of controls. The most common was p.I157T, which was found in patients and controls with the same frequency. Functional analysis identified nine functionally deleterious VUS, another nine functionally neutral VUS, and four intermediate VUS (including p.I157T). We found that carriers of truncating CHEK2 mutations had a high BC risk (OR 8.19; 95% CI 4.11-17.75), and that carriers of functionally deleterious missense variants had a moderate risk (OR 4.06; 95% CI, 1.37-13.39). Carriers of these mutations developed BC at 44.4 and 50.7 years, respectively. Functionally neutral and functionally intermediate missense variants did not increase the BC risk. BC in CHEK2 mutation carriers was frequently ER-positive and of higher grade. Notably, carriers of CHEK2 mutations developed second cancers more frequently than BRCA1/BRCA2/PALB2/p53 or mutation non-carriers. CONCLUSION: Hereditary CHEK2 mutations contribute to the development of hereditary BC. The associated cancer risk in mutation carriers increases with the number of affected individuals in a family. Annual follow-up with breast ultrasound, mammography, or magnetic resonance imaging is recommended for asymptomatic mutation carriers from the age of 40. Surgical prevention and specific follow-up of other tumors should be considered based on family cancer history. The work was supported by grants from the Czech Health Research Council of the Ministry of Health of the Czech Republic NR 15-28830A, 16-29959A, NV19-03-00279, projects of the PROGRES Q28/LF1, GAUK 762216, SVV2019 / 260367, PRIMUS/17/MED/9, UNCE/MED/016, Progress Q26, LQ1604 NPU II and project AVČR Qualitas. The analysis of a set of unselected controls was made possible by the existence and support of the scientific infrastructure of the National Center for Medical Genomics (LM2015091) and its project aimed at creating a reference database of genetic variants of the Czech Republic (CZ.02.1.01/0.0/0.0/16_013/0001634). The authors declare they have no potential conflicts of interest concerning drugs, products, or services used in the study. The Editorial Board declares that the manuscript met the ICMJE recommendation for biomedical papers. Submitted: 2. 4. 2019 Accepted: 14. 5. 2019.


Breast Neoplasms/genetics , Checkpoint Kinase 2/genetics , Genetic Predisposition to Disease , Cell Line , Czech Republic , Female , Germ-Line Mutation , Humans , Risk Factors
...