Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 6: 35456, 2016 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-27748445

RESUMEN

Development of the brain involves the formation and maturation of numerous synapses. This process requires prominent changes of the synaptic proteome and potentially involves thousands of different proteins at every synapse. To date the proteome analysis of synapse development has been studied sparsely. Here, we analyzed the cortical synaptic membrane proteome of juvenile postnatal days 9 (P9), P15, P21, P27, adolescent (P35) and different adult ages P70, P140 and P280 of C57Bl6/J mice. Using a quantitative proteomics workflow we quantified 1560 proteins of which 696 showed statistically significant differences over time. Synaptic proteins generally showed increased levels during maturation, whereas proteins involved in protein synthesis generally decreased in abundance. In several cases, proteins from a single functional molecular entity, e.g., subunits of the NMDA receptor, showed differences in their temporal regulation, which may reflect specific synaptic development features of connectivity, strength and plasticity. SNARE proteins, Snap 29/47 and Stx 7/8/12, showed higher expression in immature animals. Finally, we evaluated the function of Cxadr that showed high expression levels at P9 and a fast decline in expression during neuronal development. Knock down of the expression of Cxadr in cultured primary mouse neurons revealed a significant decrease in synapse density.


Asunto(s)
Encéfalo/metabolismo , Corteza Cerebral/metabolismo , Proteoma , Proteómica , Sinapsis/metabolismo , Animales , Encéfalo/crecimiento & desarrollo , Moléculas de Adhesión Celular/metabolismo , Corteza Cerebral/crecimiento & desarrollo , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/metabolismo , Mapeo de Interacción de Proteínas , Mapas de Interacción de Proteínas , Proteómica/métodos
2.
PLoS One ; 7(6): e39420, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22745750

RESUMEN

Neurobeachin (Nbea) is a multidomain scaffold protein abundant in the brain, where it is highly expressed during development. Nbea-null mice have severe defects in neuromuscular synaptic transmission resulting in lethal paralysis of the newborns. Recently, it became clear that Nbea is important also for the functioning of central synapses, where it is suggested to play a role in trafficking membrane proteins to both, the pre- and post-synaptic sites. So far, only few binding partners of Nbea have been found and the precise mechanism of their trafficking remains unclear. Here, we used mass spectrometry to identify SAP102, a MAGUK protein implicated in trafficking of the ionotropic glutamate AMPA- and NMDA-type receptors during synaptogenesis, as a novel Nbea interacting protein in mouse brain. Experiments in heterologous cells confirmed this interaction and revealed that SAP102 binds to the C-terminal part of Nbea that contains the DUF, PH, BEACH and WD40 domains. Furthermore, we discovered that introducing a mutation in Nbea's PH domain, which disrupts its interaction with the BEACH domain, abolishes this binding, thereby creating an excellent starting point to further investigate Nbea-SAP102 function in the central nervous system.


Asunto(s)
Proteínas Portadoras/metabolismo , Guanilato-Quinasas/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo , Animales , Proteínas Portadoras/genética , Línea Celular , Femenino , Guanilato-Quinasas/genética , Humanos , Inmunoprecipitación , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/genética , Unión Proteica , Ratas , Ratas Wistar , Factores de Transcripción/genética
3.
Proteomics ; 12(15-16): 2428-32, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22707207

RESUMEN

A typical high-sensitivity antibody affinity purification-mass spectrometry experiment easily identifies hundreds of protein interactors. However, most of these are non-valid resulting from multiple causes other than interaction with the bait protein. To discriminate true interactors from off-target recognition, we propose to differentially include an (peptide) antigen during the antibody incubation in the immuno-precipitation experiment. This contrasts the specific antibody-bait protein interactions, versus all other off-target protein interactions. To exemplify the power of the approach, we studied the DMXL2 interactome. From the initial six immuno-precipitations, we identified about 600 proteins. When filtering for interactors present in all anti-DMXL2 antibody immuno-precipitation experiments, absent in the bead controls, and competed off by the peptide antigen, this hit list is reduced to ten proteins, including known and novel interactors of DMXL2. Together, our approach enables the use of a wide range of available antibodies in large-scale protein interaction proteomics, while gaining specificity of the interactions.


Asunto(s)
Complejos Multiproteicos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Mapeo de Interacción de Proteínas , Proteómica , Animales , Antígenos/metabolismo , Humanos , Ratones , Ratones Endogámicos C57BL , Péptidos/metabolismo , Unión Proteica , ATPasas de Translocación de Protón Vacuolares/metabolismo
4.
J Biol Chem ; 286(29): 25495-504, 2011 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-21596744

RESUMEN

Fragile X syndrome (FXS), the most common form of hereditary mental retardation, is caused by a loss-of-function mutation of the Fmr1 gene, which encodes fragile X mental retardation protein (FMRP). FMRP affects dendritic protein synthesis, thereby causing synaptic abnormalities. Here, we used a quantitative proteomics approach in an FXS mouse model to reveal changes in levels of hippocampal synapse proteins. Sixteen independent pools of Fmr1 knock-out mice and wild type mice were analyzed using two sets of 8-plex iTRAQ experiments. Of 205 proteins quantified with at least three distinct peptides in both iTRAQ series, the abundance of 23 proteins differed between Fmr1 knock-out and wild type synapses with a false discovery rate (q-value) <5%. Significant differences were confirmed by quantitative immunoblotting. A group of proteins that are known to be involved in cell differentiation and neurite outgrowth was regulated; they included Basp1 and Gap43, known PKC substrates, and Cend1. Basp1 and Gap43 are predominantly expressed in growth cones and presynaptic terminals. In line with this, ultrastructural analysis in developing hippocampal FXS synapses revealed smaller active zones with corresponding postsynaptic densities and smaller pools of clustered vesicles, indicative of immature presynaptic maturation. A second group of proteins involved in synaptic vesicle release was up-regulated in the FXS mouse model. In accordance, paired-pulse and short-term facilitation were significantly affected in these hippocampal synapses. Together, the altered regulation of presynaptically expressed proteins, immature synaptic ultrastructure, and compromised short-term plasticity points to presynaptic changes underlying glutamatergic transmission in FXS at this stage of development.


Asunto(s)
Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/patología , Hipocampo/fisiopatología , Hipocampo/ultraestructura , Fenotipo , Proteómica , Sinapsis/metabolismo , Actinas/metabolismo , Animales , Región CA1 Hipocampal/metabolismo , Región CA1 Hipocampal/patología , Región CA1 Hipocampal/fisiopatología , Región CA1 Hipocampal/ultraestructura , Diferenciación Celular , Citoesqueleto/metabolismo , Modelos Animales de Enfermedad , Potenciales Postsinápticos Excitadores/fisiología , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/fisiopatología , Técnicas de Inactivación de Genes , Hipocampo/metabolismo , Hipocampo/patología , Ratones , Neuritas/metabolismo , Plasticidad Neuronal/fisiología , Seudópodos/metabolismo , Sinapsis/patología , Vesículas Sinápticas/metabolismo , Vesículas Sinápticas/patología , Espectrometría de Masas en Tándem
5.
Anal Bioanal Chem ; 397(8): 3195-202, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20361179

RESUMEN

The brain integrates complex types of information, and executes a wide range of physiological and behavioral processes. Trillions of tiny organelles, the synapses, are central to neuronal communication and information processing in the brain. Synaptic transmission involves an intricate network of synaptic proteins that forms the molecular machinery underlying transmitter release, activation, and modulation of transmitter receptors and signal transduction cascades. These processes are dynamically regulated and underlie neuroplasticity, crucial to learning and memory formation. In recent years, interaction proteomics has increasingly been used to elucidate the constituents of synaptic protein complexes. Unlike classic hypothesis-based assays, interaction proteomics detects both known and novel interactors without bias. In this trend article, we focus on the technical aspects of recent proteomics to identify synapse protein complexes, and the complementary methods used to verify the protein-protein interaction. Moreover, we discuss the experimental feasibility of performing global analysis of the synapse protein interactome.


Asunto(s)
Mapeo de Interacción de Proteínas/métodos , Proteínas/metabolismo , Proteómica/métodos , Sinapsis/metabolismo , Animales , Humanos , Unión Proteica , Proteínas/química , Sinapsis/química , Transmisión Sináptica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA